平成27年度(2015 Apr. --2016 Mar.)
第150回学習院大学スペクトル理論セミナー
  
日時: 2016 年 2月 27 日 (土) 14:30 -- 17:30
    場所: 学習院大学 南4号館2階 205セミナー室
1. 14:30--15:30
    講師: 檀 裕也氏(松山大学)
    題目: TBA 
tea time 15:30--16:00
2. 16:00--17:30 
    講師: Heinz Siedentop氏 (University of Munich) 
    題目: Ground State Energy of Heavy Atoms: The Leading Correction
  
追加情報
学習院早稲田幾何学セミナーでは以下のような講演があります. 
  解析学的な話題です. 
2015年12月7日(月)16:00--17:30 
    Speaker: Richard Schoen (UC Irvine, Stanford University)
    Title: Extremal eigenvalue problems and minimal surfaces
http://www.math.gakushuin.ac.jp/~hosono/GWGS/GWGS.html
  
第149回学習院大学スペクトル理論セミナー
  
日時: 2015 年 12月 5 日 (土) 14:00 -- 18:00
  場所: 学習院大学 南4号館2階 205セミナー室
1. 14:00--15:00 
    講師: Dhriti Ranjan Dolai 氏 (Chennai Mathematical Institute)
    題目: Towards integrated density of state for decaying randomness
  
概略: abstract
  
---15:00-15:30 tea time ---
2. 15:30--16:30 
    講師: Vit Jakubsky氏 (Department of Theoretical Physics Institute of Nuclear Physics, Czeck Rep.)
    題目: Sufficient conditions for confinement of Dirac fermions in graphene
概略: We  study the confinement of Dirac fermions in graphene and in carbon 
    nanotubes by external magnetic fields, mechanical deformations or 
    inhomogeneities in the substrate. By applying variational principles to the 
    square of the Dirac operator, we obtain sufficient and necessary conditions 
    for existence of discrete energy levels, i.e. confinement of the 
    quasi-particles. The rigorous theoretical results are illustrated on the 
    realistic examples of the three classes of traps.
  
---16:30-17:00 tea time ---
3. 17:00--18:00 
    講師: Christian Sadel氏 ( IST Austria ) 
    題目: Complex analytic one-frequency cocycles
    (joint with A. Avila and S. Jitomirskaya)
概略: 
    Given an analytic function A(x) from the one-dimensional Torus into the set of 
    d by d complex matrices and given a frequency a one can define a cocycle map 
    f(x,v)=(x+a, A(x)v) where x is an element of the Torus and v a vector. 
    Iterating the map leads to a one-frequency cocycle, the dynamical behavior is 
    characterized by Lyapunov exponents. We show joint continuity of Lyapunov 
    exponents at irrational frequencies, give a characterization for the existence 
    of a dominated splitting and prove that for a fixed irrational frequency and 
    a dense subset of analytic maps $A(x)$ the cocycle is dominated.
  
第148回学習院大学スペクトル理論セミナー
日時: 2015 年 11月 28 日 (土) 15:00 -- 16:00
  場所: 学習院大学 南4号館2階 205セミナー室
講師: Frederic Klopp 氏(Université Pierre et Marie Curie)
  題目: Stark-Wannier ladders and cubic exponential sums
概略: The talk is devoted to Stark-Wannier ladders
    i.e. the resonances of a one dimensional periodic operator in
    a constant electric field. These periodic sequences of points
    in the lower half of the complex plane have been conjecture to
    be very sensitive to the number theoretical properties of the
    electric field. Computing the asymptotics of the reflection
    coefficients in the case of a simple 1-periodic potential, we
    related the resonances to cubic exponential sums in which the
    frequency is computed from the electric field. In the case of
    rational frequency, we derive "large imarginary part"
    asymptotics for the resonances. The talk is based on joint
    work with A. Fedotov (St Petersburg).
  
集中講義のお知らせ(12月1日--12月3日, 12月4日--12月5日)
集中講義の部屋は全て、南 4-205 です.
・12月1日--12月3日
 講師:Frederic Klopp 氏(Université Pierre et Marie Curie)
                                                             題目:Interacting one-dimensional quantum particles in a random field 
  概略: Consider $N$ one-dimensional quantum particles in 
     the interval $[0,L]$ submitted to a random field. The 
     interaction is assumed to be repulsive. In the thermodynamic 
     limit ($L,N\to+\infty$, $N/L\to\rho>0$), the aim of the 
     lectures is to describe the ground state and the ground state 
     energy per particle when $\rho$ is small. We will discuss both
     the bosonic and the fermionic cases.
 12月1日(火)15:00--17:00
   Lecture 1: we will give an introduction to the problem and 
 discuss the main results wit hout proofs.
 12月2日(水)17:00--19:00 
   Lecture 2: we will present and at least partially prove novel 
   results on the one particle hamiltonian that are preparatory 
   to the study of the interacting particles. These results will 
   describe both the low lying spectrum and the associated 
   eigenfunctions. We will also explain how these result lead to 
   a reduced model for interacting particles.
 12月3日(木)15:00 --17:00 
   Lecture 3: we will present our analysis of the reduced model 
   and explain how it leads to the main results presented in lecture 1.
・12月4日--12月5日
 講師:Christopher Shirley (Universite Libre de Bruxelles)
   題目: Decorrelation estimates for random operators
概略: abstract
 12月4日(金)15:00--17:00 
                                                               12月5日(土)10:00--12:00
小谷眞一先生(大阪大学名誉教授)の、
10月23日(金)〜28日(水)の集中講義と
スペクトル理論セミナーのご案内. 
・集中講義
    10月23日(金)1回目 午後3時〜5時
    10月26日(月)2回目 午後3時〜5時
    10月27日(火)3回目 午後5時〜7時
    10月28日(水)4回目 午前10時〜12時
 タイトル:1Dシュレーディンガー作用素とKdV方程式
    −無反射性をkey wordにしてー
アブストラクト:1Dシュレーディンガー作用素とKdV方程式などの可積分系との関係に
    ついては1960年代以来よく知られている。この講義では無反射性を持つ初期関数(振動
    する関数)の空間に対して佐藤-Segal-Wilson理論を適用することによりKdV方程式の解
    を力学系として構成する。また解の極限的な性質についても考察する。
  
第147回学習院大学スペクトル理論セミナー
  日時: 2015 年 10月 24 日 (土) 14:30 -- 17:00
  場所: 学習院大学 南4号館2階 205セミナー室
1. 14:30--15:30
    講師: 佐々木 格氏(信州大学)
    題目: 相対論的シュレディンガー作用素の埋蔵固有値について
概略: 遠方で減衰するポテンシャルV(x)をもつ相対論的シュレディンガー作用素で正の
    固有値を持つものが存在することを示す。ポテンシャルは滑らかかつ遠方で
    1/|x|のオーダーで減衰する。  
15:30-- 16:00 tea time
2. 16:00--17:00 
    講師: 小谷眞一氏(大阪大学名誉教授)
    題目: エルゴード的1Dシュレーディンガー作用素のスペクトルについて
概略: エルゴード的1Dシュレーディンガー作用素は、周期的ポテンシャルか
    ら概周期的あるいはランダムなポテンシャルを含む広いクラスの振動するポテンシャル
    をもつシュレーディンガー作用素である。セミナーではその基礎理論と最近の話題に
    ついて概Mathieu作用素、Fibonacciポテンシャルを例にしながら解説する。
  
第146回学習院大学スペクトル理論セミナー
日時: 2015 年 9月 26 日 (土) 14:30 -- 17:00
    場所: 学習院大学 南4号館2階 205セミナー室
1. 14:30--15:30
    講師: 貝塚 公一 氏 (学習院大学)
題目: A characterization of the $L^{2}$-range of the
    Poisson transform on symmetric spaces of noncompact type
概略: We develop the stationary scattering theory for a system of invariant
    differential operators on symmetric spaces of noncompact type.
    When spectral parameter is real and singular, a certain degeneracy arises
    in asymptotic behavior of joint eigenfunctions at infinity.
    In order to characterize the $L^{2}$-range of the Poisson
    transform, we introduce an Agmon-H\"{o}rmander type norm
    in accordance with degeneracy of the spectral parameter.
    We also prove a scattering formula for joint eigenfunctions which
    involves degenerate components.
Tea time
2. 16:00--17:00
講師: Fulton Gonzalez 氏 (Tufts University)
題目: Mean Value Operators, Integral Geometry, and Group Theory
概略: An old classical result says that a continuous function $f$ on 
    $\mathbb R^n$ is harmonic if and only if its average value over any sphere 
    equals its value at the center. In this talk, we'll explore various extensions 
    of this principle, focusing primarily on symmetric spaces.
    We will also explore various integral transforms associated with mean
    value operators, and consider some applications to wave equations
    in one and many time variables.
第145回学習院大学スペクトル理論セミナー
日時: 2015 年 7月 18 日 (土) 14:00 -- 17:00
    場所: 学習院大学 南4号館2階 205セミナー室
1. 14:00--15:00
    講師: 清水翔之氏 (東工大理工) 
題目: 平均場近似の枠組みにおける量子多体系の散乱理論について
概略: 
    量子多体系を非線形シュレーディンガー方程式を古典場とする系の量子化と捉え、
    その古典極限を考察する.
    古典極限のレベルにおいて系の古典軌道からの揺らぎを記述する
    生成・消滅に関して二次の(時間依存する)量子場のハミルトニアン
    のスペクトル解析において得られた結果を報告する.
    本研究は佐々木浩宣氏(千葉大学)、鈴木章斗氏(信州大学)との共同研究に基づく.
  
tea time 15:00--15:30
  
2. 15:30--17:00
    講師: 川本昌紀氏(神戸大) 
題目: パルス磁場上での散乱
概略: 
    本講演では時間に周期的に on, off を繰り返すパルス磁場上での荷電粒子の漸近挙
    動について考察する。
    特に、磁場の周期、大きさ、粒子の質量、電荷によって、荷電粒子が束縛状態。等速
    直線運動のように散乱する。指数的な速さで散乱する。の3つの状態になりうる事を
    見る。さらに、荷電粒子が指数的に散乱する場合では、非常に弱い減衰を持つポテン
    シャルにおいても波動作用素が存在し、さらに完全である事を見る。
    なお本講演は足立匡義氏(神戸大学)との共同研究に基づくものである。
第144回学習院大学スペクトル理論セミナー
日時: 2015 年 6月 27 日 (土) 14:30 -- 17:00
    場所: 学習院大学 南4号館2階 205セミナー室
  
1. 14:30--15:30
講師: Gianfausto Dell’Antonio 氏(SISSA, Trieste)
題目: Fat graph shrinking to a metric graph: the problem of boundary
    conditions at the vertices
Short summary:
    A fat graph is a tubular neighborhood of a metric graph with Dirichlet b.c.
    at the surface. For a metric graph the dynamics is 
    determined by the boundary conditions at the vertices.  We show, in the case
    of a star graph, that, when the radius of the neighborhood tends to zero, 
    the limit Schroedinger dynamics is controlled by the zero-energy resonances 
    of the Schroedinger operator on the fat graph (and therefore by the shape of 
    the fat graph). If there are no resonances, if the limit exists in strong 
    resolvent convergence it has Dirichlet b.c. by a detailed analysis of the 
    case of the half line. 
tea time
  
2. 16:00--17:00
講師: Trinh Khanh Duy氏(九州大学IMI)
題目: Spectral measures of random Jacobi matrices and associated
    Hermite polynomials.
Abstract: Consider a random (symmetric) Jacobi matrix consisting of two 
    i.i.d. sequences of random variables, one for the diagonal and the other 
    for the off diagonal. The common distributions of the diagonal and the 
    off diagonal are standard Gaussian distribution and the square root of 
    the Gamma distribution with parameters $(1, \alpha), \alpha > 0$, 
    respectively. The matrix is regarded as the limit of Gaussian beta
    ensembles (G$\beta$E for short) as the matrix sizes $N$ tend to infinity 
    with the constraint that $N\beta=2\alpha$. We investigate spectral
    measures of the random Jacobi matrix and obtain the explicit formula for 
    the mean spectral measure. It turns out that the mean spectral measure 
    coincides with the probability measure of the associated Hermite
    polynomials.
  
第143回学習院大学スペクトル理論セミナー
日時: 2015 年 6月 20 日 (土) 14:30 -- 17:00
    場所: 学習院大学 南4号館2階 205セミナー室
1. 14:30--15:30
講師: 蘆田聡平氏(京都大学理学研究科D1)
題目: Born-Oppenheimer approximation for an atom in constant magnetic 
    fields
概略:
    We obtain a reduction scheme for the study of the quantum evolution of 
    an atom in constant magnetic fields using the method developed by Martinez, 
    Nenciu and Sordoni based on the construction of almost invariant subspace. 
    In Martinez-Sordoni such a case is also studied but their reduced 
    Hamiltonian includes the vector potential terms. 
    Using the center of mass coordinates and constructing the almost invariant 
    subspace different from theirs, we obtain the reduced Hamiltonian which does 
    not include the vector potential terms. Using the reduced evolution 
    we also obtain the asymptotic expantion of the evolution for a specific 
    localized initial data, which verifies the straight motion of an atom in 
    constatnt magnetic fields.
  
15:30--16:00 tea time
2. 16:00--17:00
講師: Gianfausto Dell’Antonio 氏(SISSA, Trieste)
題目: Quadratic form for the contact interaction of three fermions
概略:
    We give the quadratic form for the contact interaction of two identical
    fermions of unit mass and a third particle of mass m. 
    We give the ranges of m for which the corresponding symmetric operator has 
    only one self-adjoint extension, the range for which there is a one-parameter 
    family of extensions, the one for which all extensions are unbounded below. 
    We also show that when there is only one extension it can be seen as limit, 
    in strong resolvent convergence, of a sequence of Hamiltonians with a regular 
    two-body potential which have a zero energy resonance
第142回学習院大学スペクトル理論セミナー
日時: 2015 年 5月 16 日 (土) 14:30 -- 17:00
  場所: 学習院大学 南4号館2階 205セミナー室
1.	14:30—15:30 
    講師: 高津飛鳥氏(首都大学東京 理工学研究科)
題目: Riemannian Wasserstein geometry on the space of Gaussian measures 
    over the Wiener space 
概略: 
    An abstract Wiener space is a triple $(H,E, \mu)$, 
    where the Cameron--Martin space $H$ is a separable Hilbert space, 
    the Wiener measure $\mu$ plays as a standard Gaussian measure on $H$, 
    and $E$ is a separable Banach space on which $\mu$ is supported. 
    It is known that the space of Gaussian measures on $E$ being 
    equivalent to $\mu$ becomes a Hilbert manifold, 
    and the manifold admits a non-positive Riemannian metric, so-called 
    the Fisher metric due to the information geometry. 
    In this talk, we construct a non-negative Riemannian metric, 
    whose Riemannian distance function coincides with the Wasserstein 
    distance function. 
    The Wasserstein distance function is a (pseudo) distance function on 
    the space of probability measures, whose induced topology is weaker 
    than the weak topology. 
    We explain the difference/relation between two geometries 
    and we give some applications using both geometries. 
This is based on a joint work with Hiroshi KAWABI(Okayama University)
tea time
2.	16:00—17:00 
    講師: Andr\’{e} Martinez氏(University of Bologna)
題目: Width of resonances for Helmholtz resonators with straight neck in 
    any dimension.
概略: This is a joint work with Alain Grigis and Thomas Duykaerts 
    where we obtain an optimal bound on the width of the lowest resonance for 
    a general Helmholtz resonators with straight neck. Such a resonator 
    consists of a bounded cavity, connected with the exterior by a thin tube. 
    The frequency of the sounds it produces are determined by the shape of 
    the cavity, and one expects that their duration is related to the length 
    of the tube and to the diameter of its section. From a mathematical point 
    of view, this phenomena is described by the resonances of the Dirichlet 
    Laplacian on the domain consisting of the union of the cavity, the tube, 
    and the exterior. Here, we obtain an asymptotic estimate on the duration 
    of the sounds when the width of the tube tends to zero. This estimate 
    shows that this duration is exponentially large, with a rate that is 
    proportional to the length of the tube, and inversely proportional to its 
    width. The proof is based on previous results obtained by Hislop-Martinez 
    and Martinez-N\’{e}d\’{e}lec, and on a recent version of Carleman 
    estimates due to Kenig-Sj\”{o}strand-Uhlman.