List of Papers by Shu Nakamura
- Nakamura, S.:
Structure of the scattering operator for time-periodic Schrödinger operators, J. Math. Soc. Japan 38,
261-273 (1986)
- Nakamura, S.: A remark on eigenvalue splittings for one-dimensional double-well Hamiltonians,
Lett. Math. Phys. 11, 337-340 (1986)
- Nakamura, S.: Asymptotic completeness for three-body Schrödinger equations with time-periodic potentials,
J. Fac. Sci. Univ. Tokyo, Sec. IA 33 , 379-402 (1986)
- Nakamura, S.: Time-delay and Lavine's formula, Commun. Math. Phys. 109, 397-415 (1987)
- Nakamura, S.: Integral kernels of the scattering matrices for time-periodic Schrödinger equations,
J. Funct. Anal. 76, 176-192 (1988)
- Nakamura, S.: A note on the absence of resonances for Schrödinger operators, Lett. Math. Phys. 16, 217-223 (1988)
- Nakamura, S.: Scattering theory for the shape resonance model.
I. Non-resonant energies, Ann. Inst. H. Poincaré, phys. théo. 50, 115-131 (1989)
- Nakamura, S.: Scattering theory for the shape resonance model.
II. Resonance scattering, Ann. Inst. H. Poincaré, phys. théo. 50, 133-142 (1989)
- Hislop, P., Nakamura, S.: Semiclassical resolvent estimates,
Ann. Inst. H. Poincaré, phys. théo. 51, 187-198 (1989)
- Nakamura, S.: Shape resonances for distortion analytic Schrödinger operators, Commun. P. D. E. 14, 1385-1419 (1989)
- Nakamura, S., Bellissard, J.: Low energy bands do not contribute to quantum Hall effect, Commun. Math. Phys. 131, 283-305 (1990)
- Nakamura, S.: Distortion analyticity for two-body Schrödinger operators, Ann. Inst. H. Poincaré, phys. théo. 53, 149-157 (1990)
- Hislop, P., Nakamura, S.: Stark Hamiltonian with unbounded random potentials, Rev. Math. Phys. 2, 479-494 (1990)
- Nakamura, S.: Semiclassical resolvent estimates for the barrier top energy, Commn. P. D. E. 16, 873-883 (1991)
- Jensen, A., Nakamura, S.: Mapping properties of wave operators for two-body Schrödinger operators, Lett. Math. Phys. 24, 295-305 (1992)
- Nakamura, S.: Resolvent estimates and time-decay in the semiclassical limit, Asterisqué 210, 247-262 (1992).
- Jensen, A., Nakamura, S.:
Mapping properties of functions of Schrödinger operators between Lp-spaces and Besov spaces,
Advanced Studies in Pure Math. 23 (Spectral and Scattering Theory and Applications, ed. K. Yajima), 187-209 (1994).
- Nakamura, S.: Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Commun. Math. Phys. 161, 63-76 (1994).
- Nakamura, S.: Tunneling effects in momentum space and scattering,
Lecture Notes in Pure Appl. Math. 161 (Spectral and Scattering Theory, ed. M. Ikawa) 1994, Marcel Decker, New York.
- Martinez, A., Nakamura, S.: Adiabatic limit and scattering, C. R. Acad. Sci. Paris, 318, Serie II, 1153-1158 (1994).
- Nakamura, S.: Lp-estimates for Schrödinger operators, Proc. Indian Acad. Sci. (Math. Sci.) 104, 653-666 (1994).
- Jensen, A., Nakamura, S.: Lp-mapping properties of functions of Schrödinger operators and their applications to scattering theory,
J. Math. Soc. Japan 47, 252-273 (1995).
- Nakamura, S.: On Martinez' method on phase space tunneling, Rev. Math. Phys. 7, 431-441 (1995).
- Nakamura, S.: On an example of phase-space tunneling, Ann. Inst. H. Poincaré, phys. théo. 63, 211-229 (1995).
- Nakamura, S.: Band spectrum for Schrödinger operators with strong periodic magnetic fields.
in Partial Differential Operators and Mathematical Physics (eds. M. Demuth, B. W. Schulze), Birkhauser 1995, 261-270.
- Nakamura, S.: Gaussian decay estimates for the eigenfunction of magnetic Schrödinger operators, Comm. P.D.E. 21, 993-1006(1996).
- Jensen, A., Nakamura, S.: The 2D Schrödinger equation for neutral pair in a constant magnetic field,
Ann. Inst. H. Poincaré (Phys. Theo.) 67 , 387-410 (1997).
- Nakamura, S.: Agmon-type exponential decay estimates for pseudodifferential Operators, J. Math. Sci. Univ. Tokyo 5, 693-712 (1998)
- Herbst, I., Nakamura, S.: Schrödinger operators with strong magnetic fields: Quasi-periodicity of spectral orbits and topology,
inDifferential Operators and Spectral Theory: (V. Buslaev, M. Solomyak. D. Yafaev eds.), American Math. Soc. Transl. 189 (1999).
- Nakamura, S.: Tunneling estimates for magnetic Schrödinger operators, Commun. Math. Phys. 200, 25-34 (1999)
- Nakamura, S.: Spectral shift function for trapping energies in the semiclassical limit, Commun. Math. Phys. 208,173-193 (1999)
- Nakamura, S.: Lifshitz tail for 2D discrete Schrodinger operator with random magnetic field. Ann. Henri Poincaré 1, 823-835 (2000)
- Nakamura, S.: Lifshitz tail for Schrödinger operator with random magnetic field. Commun. Math. Phys. 214, 565-572 (2000)
- Nakamura, S.: A remark on the Dirichlet-Neumann decoupling and the integrated density of states. J. Funct. Anal. 179, 136-152 (2001)
- Combes, J. M., Hislop, P. D., Nakamura, S.:
The Lp-theory of spectral shift function, the Wegner estimate, and the integrated density of states for some random operators.
Commun. Math. Phys. 218, 113-130 (2001)
- Combes, J. M., Hislop, P. D., Klopp, F., Nakamura, S.:
The Wegner estimate and the integrated density of states for some random operators.
Proc. Indean Acad. Sci. (Math. Sci.) 112, 31-53 (2002)
- Nakamura, S.: A remark on the Lifshitz tail for Schrödinger operator with random magnetic field.
Proc. Indean Acad. Sci. (Math. Sci.) 112, 183-187 (2002)
- Martinez, A., Nakamura, S., Sordoni, V.: Phase space tunneling and multistate scattering. J. Funct. Anal. 191, 297-317 (2002)
- Nakamura, S., Stefanov, P., Zworski, M.: Resonance expansions of propagators in the presence of potential barriers.
J. Funct. Anal. 205, 180-205 (2003)
- Klopp, F., Nakamura, S., Nakano, F., Nomura, Y.: Anderson
localization for 2D discrete Schrödinger operators with random magnetic fields. Ann. H. Poincaré 4, 795-811 (2003)
- Klopp, F., Nakamura, S.: A note on Anderson localization for the random hopping model, J. Math. Phys. 44, 4975-4980 (2003)
- Nakamura, S., Sordoni, V.: A remark on exponential estimates in adiabatic theory.
Comm. Partial Differential Equations 29, 111-132 (2004)
- Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349-367 (2005)
- Martinez, A., Nakamura, S., Sordoni, V.: Analytic smoothing effect for the Schrödinger equation with long-range perturbation,
Comm. Pure Appl. Math. 59 1330-1351 (2006)
- Hundertmark, D., Killip, R., Nakamura, S., Stollmann, P., andVeselic, I.:
Bounds on the spectral shift function and the density of states. Commun. Math. Phys. 262, 489-503 (2006)
- Martinez, A., Nakamura, S., Sordoni, V.: Analytic singularities for long range Schrödinger equations.
Comptes Rendus Mathematique 346, 15-16 (2008), 849-852.
- Nakamura, S.: Wave front set for solutions to Schrödinger equations.
J. Functional Analysis 256, 1299-1309 (2009).
- Nakamura, S.: Semiclassical singularity propagation property for Schrödinger equations.
J. Math. Soc. Japan 61 (1), 177-211 (2009).
(preprint at arxiv.org)
- Klopp, F., Nakamura, S.: Spectral extrema and Lifshitz tails for non monotonous alloy type models.
Commun. Math. Phys. 287, 1133-1143 (2009). (preprint at arxiv.org)
- Mao, S., Nakamura, S.:
Wave front set for solutions to perturbed harmonic oscillators.
Comm. Partial Differential Equations 34 (5), 506-519 (2009). (preprint at arxiv.org)
- Martinez, A., Nakamura, S., Sordoni, V.:
Analytic wave front for solutions to Schrödinger equation,
Advances in Math. 222, 1277-1307 (2009). (preprint at arxiv.org)
- Ito, K., Nakamura, S.: Singularities of solutions to Schrödinger equation on scattering manifold.
American J. Math. 131 (6), 1835-1865 (2009). (preprint at arxiv.org)
- Ito, K., Nakamura, S.:
Time-dependent scattering theory for Schrödinger operators on scattering manifolds.
J. London Math. Soc. 81, 774-792 (2010).
(preprint at arxiv.org)
- Klopp, F., Nakamura, S.:
Lifshitz tails for generalized alloy type random Schrödinger operators.
Analysis & PDE 3-4, 409-426 (2010).
(preprint at arxiv.org)
- Martinez, A., Nakamura, S., Sordoni, V.:
Analytic wave front set for solutions to Schrödinger equations II - Long range perturbations.
Comm. Partial Differential Equations 35, 2279-2309 (2010) (preprint at arxiv.org)
- Ito, K., Nakamura, S.:
Remarks on the fundamental solution to Schrödinger equation with variable coefficients.
Ann. Inst. Fourier 62, 1091-1121 (2012).
(preprint at arxiv.org)
- Klopp, F., Loss, M., Nakamura, S., Stolz, G.:
Localization for the random displacement model.
Duke Math. J. 161, No.4, 587-621 (2012).
(preprint at arxiv.org)
-
Kaminaga, M., Krishna, M., Nakamura, S.:
A note on the analyticity of density of states.
J. Stat. Phys. 149, 496-504 (2012). (Preprint at arxiv.org)
- Klopp, F., Loss, M., Nakamura, S., Stolz, G.:
Understanding the random displacement model: From ground-state properties to localization.
Operator Theory: Advances and Applications 224 (2012), 183-219.
(preprint at arxiv.org)
- Kohmoto, M., Koma, T., Nakamura, S.:
The spectral shift function and the Friedel sum rule.
Ann. H. Poincaré 14 (2013), 1413-1424. (preprint at arxiv.org)
- Ito, K., Nakamura, S.:
Microlocal properties of scattering matrices for Schrödinger equations on scattering manifolds.
Analysis & PDE 6 (2013), No. 2, 257-286.
(preprint at arxiv.org)
-
Nakamura, S., Pushnitski, A.:
The spectrum of the scattering matrix near resonant energies in the semiclassical limit.
Trans. American Math. Soc. 366 (2014), 1725-1747 (Preprint at arxiv.org)
-
Horie, K., Nakamura, S.:
Propagation of singularities for Schrödinger equations with modestly long range type potentials.
Publ. RIMS 50 (2014), 477-496 (Preprint at arxiv.org)
- Nakamura, S.: Modified wave operators for discrete Schrödinger operators with long-range perturbations.
J. Math. Phys. 55 (2014), 112101 (8 pages) (Preprint at arxiv.org) (DOI: 10.1063/1.4900896)
- Nakamura, S.: A Remark on the Mourre theory for two body Schrödinger operators.
J. Spectral Theory 4 (2015), No.3, 613-619 (Preprint at arxiv.org) (DOI: 10.4171/JST/80)
- Nakamura, S.: Microlocal properties of scattering matrices.
Comm. Partial Differential Equations 41 (2016), 894-912 (Preprint at arxiv.org) (DOI: 10.1080/03605302.2016.1167082)
- Nakamura, S.: Microlocal resolvent estimates, revisited.
J. Math. Sci. Univ. Tokyo 24 (2017), 239-257 (Preprint at arxiv.org)
- Matsuta, T., Koma, T., Nakamura, S.: Improving the Lieb-Robinson bound for long-range interactions. Ann. H. Poincaré 18 (2017), 519-528 (Preprint at arxiv.org) (DOI: 10.1007/s00023-016-0526-1)
- Behrndt, F., Gesztesy, F., Nakamura, S.: Spectral shift functions and Dirichlet-to-Neumann maps, Math. Ann. 371 (2018), no. 3-4, 1255-1300. (Preprint at arxiv.org)
- Nakamura, S.: Remarks on scattering matrices for Schrödiner operators with critically long-range perturbations. Ann. H. Poincaré 21(10), 3119-3139 (2020) (DOI: 10.1007/s00023-020-00943-z) (Preprint at arxiv.org)
-
Kameoka, K., Nakamura, S.: Resonances and viscosity limit for the Wigner-von Neumann type Hamiltonian.
Pure Appl. Anal. 2 (2020), no. 4, 861–873. (DOI: 10.2140/paa.2020.2.861) (Prerint at arxiv.org)
-
Nakamura, S., Tadano, Y.: On a continuum limit of discrete Schrödinger operators on square lattice. J. Spectr. Theory 11 (2021), no. 1, 355-367. (DOI: 10.4171/JST/343)(Preprint at arxiv.org)
-
Nakamura, S., Taira, K.: Essential self-adjointness of real principal type operators.
Annales Henri Lebesgue, 4 (2021), 1035-1059. (DOI: 10.5802/ahl.96) (Prerint at arxiv.org)
-
Nakamura, S.: Quantization optimized with respect to the Haar basis. Preprint 2021 Jan. (Prerint at arxiv.org)
-
Exner, P., Nakamura, S., Tadano, Y.: Continuum limit of the lattice quantum graph Hamiltonian. Letters in Math. Phys. 112:83 (2022), DOI: 10.1007/s11005-022-01576-5 (Prerint at arxiv.org)
- Nakamura, S.: Long-range scattering matrix for Schrödinger-type operators. Analysys & PDE 15:7 (2022), 1763-1774, DOI: 10.2140/apde.2022.15.1725 (Preprint at arxiv.org)
-
Nakamura, S., Taira, K.:Essential self-adjointness of the Klein-Gordon type operators on asymptotically static、Cauchy-compact spacetimes. Commun. in Math. Phys. 398 (2023), no. 3, 1153-1169., DOI: 10.1007/s00220-022-04543-2 (Prerint at arxiv.org)
-
Nakamura, S., Taira, K.: A remark on the essential self-adjointness for Klein-Gordon type operators. Ann. Henri Poincaré 24 (2023), no. 8, 2587-2605. DOI: 10.1007/s00220-022-04543-2 (Prerint at arxiv.org)
- Nakamura, S.: Remarks on discrete Dirac operators and their continuum limits, to appear in J. Spectr. Theory. (Prerint at arxiv.org)
- Mikami, K., Nakamura, S., Tadano, Y.: Continuum limit for Laplace and Elliptic operators on lattices, Preprint 2023 July (Prerint at arxiv.org)
Last modified : 2023, November 5, by Shu Nakamura.