List of Papers by Shu Nakamura

  1. Nakamura, S.: Structure of the scattering operator for time-periodic Schrödinger operators, J. Math. Soc. Japan 38, 261-273 (1986)
  2. Nakamura, S.: A remark on eigenvalue splittings for one-dimensional double-well Hamiltonians, Lett. Math. Phys. 11, 337-340 (1986)
  3. Nakamura, S.: Asymptotic completeness for three-body Schrödinger equations with time-periodic potentials, J. Fac. Sci. Univ. Tokyo, Sec. IA 33 , 379-402 (1986)
  4. Nakamura, S.: Time-delay and Lavine's formula, Commun. Math. Phys. 109, 397-415 (1987)
  5. Nakamura, S.: Integral kernels of the scattering matrices for time-periodic Schrödinger equations, J. Funct. Anal. 76, 176-192 (1988)
  6. Nakamura, S.: A note on the absence of resonances for Schrödinger operators, Lett. Math. Phys. 16, 217-223 (1988)
  7. Nakamura, S.: Scattering theory for the shape resonance model. I. Non-resonant energies, Ann. Inst. H. Poincaré, phys. théo. 50, 115-131 (1989)
  8. Nakamura, S.: Scattering theory for the shape resonance model. II. Resonance scattering, Ann. Inst. H. Poincaré, phys. théo. 50, 133-142 (1989)
  9. Hislop, P., Nakamura, S.: Semiclassical resolvent estimates, Ann. Inst. H. Poincaré, phys. théo. 51, 187-198 (1989)
  10. Nakamura, S.: Shape resonances for distortion analytic Schrödinger operators, Commun. P. D. E. 14, 1385-1419 (1989)
  11. Nakamura, S., Bellissard, J.: Low energy bands do not contribute to quantum Hall effect, Commun. Math. Phys. 131, 283-305 (1990)
  12. Nakamura, S.: Distortion analyticity for two-body Schrödinger operators, Ann. Inst. H. Poincaré, phys. théo. 53, 149-157 (1990)
  13. Hislop, P., Nakamura, S.: Stark Hamiltonian with unbounded random potentials, Rev. Math. Phys. 2, 479-494 (1990)
  14. Nakamura, S.: Semiclassical resolvent estimates for the barrier top energy, Commn. P. D. E. 16, 873-883 (1991)
  15. Jensen, A., Nakamura, S.: Mapping properties of wave operators for two-body Schrödinger operators, Lett. Math. Phys. 24, 295-305 (1992)
  16. Nakamura, S.: Resolvent estimates and time-decay in the semiclassical limit, Asterisqué 210, 247-262 (1992).
  17. Jensen, A., Nakamura, S.: Mapping properties of functions of Schrödinger operators between Lp-spaces and Besov spaces, Advanced Studies in Pure Math. 23 (Spectral and Scattering Theory and Applications, ed. K. Yajima), 187-209 (1994).
  18. Nakamura, S.: Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Commun. Math. Phys. 161, 63-76 (1994).
  19. Nakamura, S.: Tunneling effects in momentum space and scattering, Lecture Notes in Pure Appl. Math. 161 (Spectral and Scattering Theory, ed. M. Ikawa) 1994, Marcel Decker, New York.
  20. Martinez, A., Nakamura, S.: Adiabatic limit and scattering, C. R. Acad. Sci. Paris, 318, Serie II, 1153-1158 (1994).
  21. Nakamura, S.: Lp-estimates for Schrödinger operators, Proc. Indian Acad. Sci. (Math. Sci.) 104, 653-666 (1994).
  22. Jensen, A., Nakamura, S.: Lp-mapping properties of functions of Schrödinger operators and their applications to scattering theory, J. Math. Soc. Japan 47, 252-273 (1995).
  23. Nakamura, S.: On Martinez' method on phase space tunneling, Rev. Math. Phys. 7, 431-441 (1995).
  24. Nakamura, S.: On an example of phase-space tunneling, Ann. Inst. H. Poincaré, phys. théo. 63, 211-229 (1995).
  25. Nakamura, S.: Band spectrum for Schrödinger operators with strong periodic magnetic fields. in Partial Differential Operators and Mathematical Physics (eds. M. Demuth, B. W. Schulze), Birkhauser 1995, 261-270.
  26. Nakamura, S.: Gaussian decay estimates for the eigenfunction of magnetic Schrödinger operators, Comm. P.D.E. 21, 993-1006(1996).
  27. Jensen, A., Nakamura, S.: The 2D Schrödinger equation for neutral pair in a constant magnetic field, Ann. Inst. H. Poincaré (Phys. Theo.) 67 , 387-410 (1997).
  28. Nakamura, S.: Agmon-type exponential decay estimates for pseudodifferential Operators, J. Math. Sci. Univ. Tokyo 5, 693-712 (1998)
  29. Herbst, I., Nakamura, S.: Schrödinger operators with strong magnetic fields: Quasi-periodicity of spectral orbits and topology, inDifferential Operators and Spectral Theory: (V. Buslaev, M. Solomyak. D. Yafaev eds.), American Math. Soc. Transl. 189 (1999).
  30. Nakamura, S.: Tunneling estimates for magnetic Schrödinger operators, Commun. Math. Phys. 200, 25-34 (1999)
  31. Nakamura, S.: Spectral shift function for trapping energies in the semiclassical limit, Commun. Math. Phys. 208,173-193 (1999)
  32. Nakamura, S.: Lifshitz tail for 2D discrete Schrodinger operator with random magnetic field. Ann. Henri Poincaré 1, 823-835 (2000)
  33. Nakamura, S.: Lifshitz tail for Schrödinger operator with random magnetic field. Commun. Math. Phys. 214, 565-572 (2000)
  34. Nakamura, S.: A remark on the Dirichlet-Neumann decoupling and the integrated density of states. J. Funct. Anal. 179, 136-152 (2001)
  35. Combes, J. M., Hislop, P. D., Nakamura, S.: The Lp-theory of spectral shift function, the Wegner estimate, and the integrated density of states for some random operators. Commun. Math. Phys. 218, 113-130 (2001)
  36. Combes, J. M., Hislop, P. D., Klopp, F., Nakamura, S.: The Wegner estimate and the integrated density of states for some random operators. Proc. Indean Acad. Sci. (Math. Sci.) 112, 31-53 (2002)
  37. Nakamura, S.: A remark on the Lifshitz tail for Schrödinger operator with random magnetic field. Proc. Indean Acad. Sci. (Math. Sci.) 112, 183-187 (2002)
  38. Martinez, A., Nakamura, S., Sordoni, V.: Phase space tunneling and multistate scattering. J. Funct. Anal. 191, 297-317 (2002)
  39. Nakamura, S., Stefanov, P., Zworski, M.: Resonance expansions of propagators in the presence of potential barriers. J. Funct. Anal. 205, 180-205 (2003)
  40. Klopp, F., Nakamura, S., Nakano, F., Nomura, Y.: Anderson localization for 2D discrete Schrödinger operators with random magnetic fields. Ann. H. Poincaré 4, 795-811 (2003)
  41. Klopp, F., Nakamura, S.: A note on Anderson localization for the random hopping model, J. Math. Phys. 44, 4975-4980 (2003)
  42. Nakamura, S., Sordoni, V.: A remark on exponential estimates in adiabatic theory. Comm. Partial Differential Equations 29, 111-132 (2004)
  43. Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349-367 (2005)
  44. Martinez, A., Nakamura, S., Sordoni, V.: Analytic smoothing effect for the Schrödinger equation with long-range perturbation, Comm. Pure Appl. Math. 59 1330-1351 (2006)
  45. Hundertmark, D., Killip, R., Nakamura, S., Stollmann, P., andVeselic, I.: Bounds on the spectral shift function and the density of states. Commun. Math. Phys. 262, 489-503 (2006)
  46. Martinez, A., Nakamura, S., Sordoni, V.: Analytic singularities for long range Schrödinger equations. Comptes Rendus Mathematique 346, 15-16 (2008), 849-852.
  47. Nakamura, S.: Wave front set for solutions to Schrödinger equations. J. Functional Analysis 256, 1299-1309 (2009).
  48. Nakamura, S.: Semiclassical singularity propagation property for Schrödinger equations. J. Math. Soc. Japan 61 (1), 177-211 (2009). (preprint at arxiv.org)
  49. Klopp, F., Nakamura, S.: Spectral extrema and Lifshitz tails for non monotonous alloy type models. Commun. Math. Phys. 287, 1133-1143 (2009). (preprint at arxiv.org)
  50. Mao, S., Nakamura, S.: Wave front set for solutions to perturbed harmonic oscillators. Comm. Partial Differential Equations 34 (5), 506-519 (2009). (preprint at arxiv.org)
  51. Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front for solutions to Schrödinger equation, Advances in Math. 222, 1277-1307 (2009). (preprint at arxiv.org)
  52. Ito, K., Nakamura, S.: Singularities of solutions to Schrödinger equation on scattering manifold. American J. Math. 131 (6), 1835-1865 (2009). (preprint at arxiv.org)
  53. Ito, K., Nakamura, S.: Time-dependent scattering theory for Schrödinger operators on scattering manifolds. J. London Math. Soc. 81, 774-792 (2010). (preprint at arxiv.org)
  54. Klopp, F., Nakamura, S.: Lifshitz tails for generalized alloy type random Schrödinger operators. Analysis & PDE 3-4, 409-426 (2010). (preprint at arxiv.org)
  55. Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to Schrödinger equations II - Long range perturbations. Comm. Partial Differential Equations 35, 2279-2309 (2010) (preprint at arxiv.org)
  56. Ito, K., Nakamura, S.: Remarks on the fundamental solution to Schrödinger equation with variable coefficients. Ann. Inst. Fourier 62, 1091-1121 (2012). (preprint at arxiv.org)
  57. Klopp, F., Loss, M., Nakamura, S., Stolz, G.: Localization for the random displacement model. Duke Math. J. 161, No.4, 587-621 (2012). (preprint at arxiv.org)
  58. Kaminaga, M., Krishna, M., Nakamura, S.: A note on the analyticity of density of states. J. Stat. Phys. 149, 496-504 (2012). (Preprint at arxiv.org)
  59. Klopp, F., Loss, M., Nakamura, S., Stolz, G.: Understanding the random displacement model: From ground-state properties to localization. Operator Theory: Advances and Applications 224 (2012), 183-219. (preprint at arxiv.org)
  60. Kohmoto, M., Koma, T., Nakamura, S.: The spectral shift function and the Friedel sum rule. Ann. H. Poincaré 14 (2013), 1413-1424. (preprint at arxiv.org)
  61. Ito, K., Nakamura, S.: Microlocal properties of scattering matrices for Schrödinger equations on scattering manifolds. Analysis & PDE 6 (2013), No. 2, 257-286. (preprint at arxiv.org)
  62. Nakamura, S., Pushnitski, A.: The spectrum of the scattering matrix near resonant energies in the semiclassical limit. Trans. American Math. Soc. 366 (2014), 1725-1747 (Preprint at arxiv.org)
  63. Horie, K., Nakamura, S.: Propagation of singularities for Schrödinger equations with modestly long range type potentials. Publ. RIMS 50 (2014), 477-496 (Preprint at arxiv.org)
  64. Nakamura, S.: Modified wave operators for discrete Schrödinger operators with long-range perturbations. J. Math. Phys. 55 (2014), 112101 (8 pages) (Preprint at arxiv.org) (DOI: 10.1063/1.4900896)
  65. Nakamura, S.: A Remark on the Mourre theory for two body Schrödinger operators. J. Spectral Theory 4 (2015), No.3, 613-619 (Preprint at arxiv.org) (DOI: 10.4171/JST/80)
  66. Nakamura, S.: Microlocal properties of scattering matrices. Comm. Partial Differential Equations 41 (2016), 894-912 (Preprint at arxiv.org) (DOI: 10.1080/03605302.2016.1167082)
  67. Nakamura, S.: Microlocal resolvent estimates, revisited. J. Math. Sci. Univ. Tokyo 24 (2017), 239-257 (Preprint at arxiv.org)
  68. Matsuta, T., Koma, T., Nakamura, S.: Improving the Lieb-Robinson bound for long-range interactions. Ann. H. Poincaré 18 (2017), 519-528 (Preprint at arxiv.org) (DOI: 10.1007/s00023-016-0526-1)
  69. Behrndt, F., Gesztesy, F., Nakamura, S.: Spectral shift functions and Dirichlet-to-Neumann maps, Math. Ann. 371 (2018), no. 3-4, 1255-1300. (Preprint at arxiv.org)
  70. Nakamura, S.: Long-range scattering matrix for Schrödinger-type operators. To appear in Analysys & PDE (Preprint at arxiv.org)
  71. Nakamura, S.: Remarks on scattering matrices for Schrödiner operators with critically long-range perturbations. Ann. H. Poincaré 21(10), 3119-3139 (2020) (DOI: 10.1007/s00023-020-00943-z) (Preprint at arxiv.org)
  72. Kameoka, K., Nakamura, S.: Resonances and viscosity limit for the Wigner-von Neumann type Hamiltonian. Pure Appl. Anal. 2 (2020), no. 4, 861–873. (DOI: 10.2140/paa.2020.2.861) (Prerint at arxiv.org)
  73. Nakamura, S., Tadano, Y.: On a continuum limit of discrete Schrödinger operators on square lattice. J. Spectr. Theory 11 (2021), no. 1, 355-367. (DOI: 10.4171/JST/343)(Preprint at arxiv.org)
  74. Nakamura, S., Taira, K.: Essential self-adjointness of real principal type operators. Annales Henri Lebesgue, 4 (2021), 1035-1059. (DOI: 10.5802/ahl.96) (Prerint at arxiv.org)
  75. Nakamura, S.: Quantization optimized with respect to the Haar basis. Preprint 2021 Jan. (Prerint at arxiv.org)
  76. Exner, P., Nakamura, S., Tadano, Y.: Continuum limit of the lattice quantum graph Hamiltonian. Preprint 2022 Feb. (Prerint at arxiv.org)
  77. Nakamura, S., Taira, K.: A remark on the essential self-adjointness for Klein-Gordon type operators. Preprint 2022 Feb. (Prerint at arxiv.org)
  78. Nakamura, S., Taira, K.:Essential self-adjointness for the Klein-Gordon type operators on asymptotically static spacetime. Preprint 2022, Mar. (Prerint at arxiv.org)
Last modified : 2022, March 9, by Shu Nakamura.