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§1. 2次, 3次, 4次方程式の解の公式

定理 1.1 2次方程式
X2 + bX + c = 0

の解は，b2 − 4c の平方根をひとつ固定し，それを R とするとき，
−b+R

2
,

−b−R

2

で与えられる．

証明 解を α, β とすれば，解と係数の関係から，α+ β = −b, αβ = c． よって，

(α− β)2 = (α+ β)2 − 4αβ = b2 − 4c

そこで，この平方根のひとつを R とし，α, β に関する連立一次方程式{
α+ β = −b

α− β = R

を解けば，(
α
β

)
=

(
1 1
1 −1

)−1( −b
R

)
=

1

2

(
1 1
1 −1

)(
−b
R

)
=

1

2

(
−b+R
−b−R

)
を得る． □

定理 1.2 3次方程式
X3 + bX2 + cX + d = 0

の解は，Y に関する 2次方程式

Y 2 + (2b3 − 9bc+ 27d)Y + (b2 − 3c)3 = 0

の 2解それぞれの 3乗根 R,S を，RS = b2−3c を満たすように一組固定するとき，
−b+R + S

3
,

−b+ ω2R + ωS

3
,

−b+ ωR + ω2S

3

で与えられる． ここで，ω は 1の原始 3乗根

ω = e
2πi
3 = cos

2π

3
+ i sin

2π

3
=

−1 +
√
−3

2

である．
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証明 ３つの解を α, β, γ とし，
Q = α+ β + γ,

R = α+ ωβ + ω2γ,

S = α+ ω2β + ωγ

とおく． これらを α, β, γ の連立方程式と考え，係数行列を M とする． ここで

|M | =

∣∣∣∣∣∣
1 1 1
1 ω ω2

1 ω2 ω

∣∣∣∣∣∣ = 3ω2 − 3ω = 3ω(ω − 1) 6= 0

より，M は正則である． よって，Q,R, S が求まれば，M の逆行列を実際に計算するこ
とにより  α

β
γ

 = M−1

 Q
R
S


から α, β, γ が得られる． さて，解と係数の関係から Q = −b だが，

R3 + S3 = −2b3 + 9bc− 27d, RS = b2 − 3c

も，ちょっとがんばればわかる． したがって，R3, S3 は定理にある Y に関する 2次方程
式の解である． R,S は，これらの 3乗根として求まり，定理の主張が導かれる． □

定理 1.3 4次方程式

X4 + bX3 + cX2 + dX + e = 0

の解は，Y に関する 3次方程式

Y 3 − (3b2 − 8c)Y 2 + (3b4 − 16b2c+ 16c2 + 16bd− 64e)Y − (b3 − 4bc+ 8d)2 = 0

の 3解それぞれの平方根 R,S, T を，RST = −b3 + 4bc− 8d を満たすように一組
固定するとき，

−b+R + S + T

4
,

−b+R− S − T

4
,

−b−R + S − T

4
,

−b−R− S + T

4

で与えられる．

証明 α, β, γ, δ を４つの解として
Q = α+ β + γ + δ,

R = α+ β − γ − δ,

S = α− β + γ − δ,

T = α− β − γ + δ
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とおく． Q,R, S, T が求まれば，上の式を α, β, γ, δ に関する連立方程式とみなして解け
ばよい． 解と係数の関係から Q = −b だが，

R2 + S2 + T 2 = 3b2 − 8c,

R2S2 + S2T 2 + T 2R2 = 3b4 − 16b2c+ 16c2 + 16bd− 64e,

RST = −b3 + 4bc− 8d

も，うんとがんばって計算すれば得られる． したがって，R2, S2, T 2 は定理にある Y に
関する 3次方程式の解である． R,S, T は，これらの平方根として求まり，定理の主張が
導かれる． □

定義 1.4 n 個の不定元 (変数) x1, x2, . . . , xn の多項式 f(x1, . . . , xn) は，任意の
σ ∈ Sn に対して

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

が成り立つとき，対称式であるという（正確には x1, . . . , xn の対称式という）．

定義 1.5 n 個の不定元 (変数) x1, x2, . . . , xn に対して，

(X − x1)(X − x2) . . . (X − xn)

を展開した式

Xn − s1X
n−1 + s2X

n−2 + · · ·+ (−1)n−1sn−1X + (−1)nsn

によって定まる s1, . . . , sn を，x1, . . . , xn の基本対称式という． とくに，sj を j

次の基本対称式という．

例 1.6 基本対称式は対称式である．

n = 2 のとき
{
s1 = x1 + x2

s2 = x1x2

n = 3 のとき


s1 = x1 + x2 + x3

s2 = x1x2 + x1x3 + x2x3

s3 = x1x2x3

n = 4 のとき


s1 = x1 + x2 + x3 + x4

s2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

s3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

s4 = x1x2x3x4
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例 1.7 x1, x2, x3 の対称式

f(x1, x2, x3) = x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3

は，上に定めた n = 3 のときの基本対称式 s1, s2, s3 によって

f(x1, x2, x3) = s21 − 3s2

と表すことができる．

定理 1.8 (対称式の基本定理) x1, . . . , xn の任意の対称式 f(x1, . . . , xn) に対し
て，ある n変数多項式 G(X1, . . . , Xn) が存在して，

f(x1, . . . , xn) = G(s1, . . . , sn)

が成り立つ． すなわち，任意の対称式は基本対称式の多項式として表すことがで
きる．

例 1.9 証明は，難しいことは使わないが煩雑なので省略する． 以下に例を挙げて証明
の代わりとする．
(1) f(x, y) = x4 + y4 を x, y の基本対対称式

s = x+ y, t = xy

の多項式として表す．
f(x, y) = x4 + y4

f(x, y)− s4 = −4x3y − 6x2y2 − 4xy3

f(x, y)− s4 + 4s2t = 2x2y2

f(x, y)− s4 + 4s2t− 2t2 = 0

よって，f(x, y) = s4 − 4s2t+ 2t2．

(2) g(x, y, z) = x3(y + z) + y3(z + x) + z3(x+ y) を x, y, z の基本対称式
s = x+ y + z, t = xy + yz + zx, u = xyz

の多項式で表す．
g(x, y, z) = x3y + x3z + xy3 + xz3 + y3z + z3y

g(x, y, z)− s2t = −2x2y2 − 5x2yz − 2x2z2 − 5xy2z − 5xyz2 − 2y2z2

g(x, y, z)− s2t+ 2t2 = −x2yz − xy2z − xyz2

g(x, y, z)− s2t+ 2t2 + su = 0

ゆえ，g(x, y, z) = s2t− 2t2 − su．
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§2. 体の拡大，拡大次数

定義 2.1 体 K が体 L の部分体，つまり

K ⊂ L

のとき，L を K の拡大体という． このとき，体の拡大 L/K ということが多い．
また，M が K の拡大体で，かつ L が M の拡大体，つまり

K ⊂ M ⊂ L

であるとき，M を拡大 L/K の中間体という．

定義 2.2 L/K を体の拡大とする．
(1) L の部分集合 A に対して，A を含む最小の L/K の中間体を K(A) と表し，

K に A を添加した体という．
(2) とくに A が有限集合で A = {α1, · · · , αn} のとき，K(A) を K(α1, · · · , αn)

と略記する．
(3) ただひとつの α ∈ L により K(α) と表される体を K の単純拡大体という．
この場合，α を拡大 K(α)/K の原始元という．

命題 2.3 L/K を体の拡大とする． α ∈ L に対して，K(α) は K 上 α で生成
される可換環（すなわち，K と α を含む L の最小の部分環）

K[α] =
{
g(α)

∣∣ g(X) ∈ K[X]
}

の商体である． したがって

K(α) =

{
g(α)

h(α)

∣∣∣ g(X), h(X) ∈ K[X], h(α) 6= 0

}
が成り立つ．

証明 K(α) は K と α を含む体だから，g(X), h(X) ∈ K[X] とすると g(α), h(α) ∈
K(α)，さらに h(α) 6= 0 であれば g(α)/h(α) ∈ K(α)． 一方，{

g(α)

h(α)

∣∣∣ g(X), h(X) ∈ K[X], h(α) 6= 0

}
は L の部分体なので，K(α) の最小性から命題の主張は正しいことがわかる． □
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例 2.4 有理数体 Q の拡大体について，いくつかの例をあげる．

(1) Q
(√

2
)
= Q

(√
2− 1

)
= Q

(
1√
2

)
= Q

(
1 + 3

√
2

5− 7
√
2

)
最初の等号は，

√
2− 1 ∈ Q

(√
2
) だから Q

(√
2− 1

)
⊂ Q

(√
2
)，

√
2 = (

√
2− 1) + 1 ∈ Q

(√
2− 1

) だから Q
(√

2
)
⊂ Q

(√
2− 1

)
よりわかる． 真ん中の等号はどうよ？　最後の等号は，

α =
1 + 3

√
2

5− 7
√
2
とおけば

√
2 =

5α− 1

7α+ 3
∈ Q(α)

となることを使えばわかるはず．

(2) Q
(√

2,
√
3
)
= Q

(√
2 +

√
3
)
= Q

(√
2−

√
3
)

√
2 +

√
3 ∈ Q

(√
2,
√
3
) より Q

(√
2 +

√
3
)
⊂ Q

(√
2,
√
3
) はＯＫ． 一方，β =

√
2 +

√
3 とおけば， 1

β
=

√
3−

√
2 が成り立ち，

Q
(√

2 +
√
3
)
= Q(β) = Q

(
1

β

)
= Q

(√
2−

√
3
)
.

さらに，
√
2 =

β − 1
β

2
∈ Q(β),

√
3 =

β + 1
β

2
∈ Q(β)

よって，Q
(√

2,
√
3
)
⊂ Q(β) = Q

(√
2 +

√
3
)．

(3) Q
(

3
√
2
)
= Q

(
3
√
4
)

γ = 3
√
2, δ = 3

√
4 とおけば，δ = γ2 より Q(δ) ⊂ Q(γ)． 逆に，γ =

δ2

2
より

Q(γ) ⊂ Q(δ)．

(4) Q(Z) = Q, Q(R) = R, Q
(
R,

√
−1
)
= C, Q

(√
−1
)
⊊ C

定義 2.5 L/K を体の拡大とすると，L は K 上のベクトル空間ともみなすこと
ができる（L における和をベクトルの和，K の元に L の元をかける操作をスカ
ラー倍とする）． このとき，K 上のベクトル空間としての L の次元を拡大 L/K

の次数といい
[L : K]

で表す． [L : K] が有限のとき，L/K は有限次拡大であるといい，そうでないと
き無限次拡大であるという．
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例 2.6 (1) Q
(√

7
) は Q 上 2次拡大である， [

Q
(√

7
)
: Q
]
= 2．

だって，1,
√
7 は，Q 上 1次独立だし，Q 上 Q

(√
7
) を生成してるから，Q 上 Q

(√
7
) の

基底だもん．
(2) Q

(
3
√
5
)
/Q は 3次拡大である， [

Q
(

3
√
5
)
: Q
]
= 3．

なぜかというと，1, 3
√
5, 3

√
25 は Q

(
3
√
5
) の Q 上の基底だから．

補題 2.7 M を体の拡大 L/K の中間体とし，α1, · · · , αm ∈ M，β1, · · · , βn ∈ L

とする．
α1, · · · , αm が K 上 1次独立であり，かつ β1, · · · , βn が M 上 1次独立

ならば，mn 個の L の元 αiβj (i = 1, · · · ,m, j = 1, · · · , n) は K 上 1次独立で
ある．

証明 mn 個の元 αiβj に K 上の線形関係
m∑
i=1

n∑
j=1

cijαiβj = 0 (cij ∈ K)

があったとする．このとき，すべての i, j に対して cij = 0 が成り立つことを確かめれば
よい． いま，上式を書き換えて

n∑
j=1

(
m∑
i=1

cijαi

)
βj = 0

を考えると，
m∑
i=1

cijαi ∈ M であり，β1, · · · , βn が M 上 1次独立という仮定から，

m∑
i=1

cijαi = 0 (j = 1, . . . , n)

を得る． さらに，cij ∈ K であり，かつ α1, · · · , αm が K 上 1次独立という仮定から

cij = 0 (i = 1, . . . , n, j = 1, . . . , n)

が導かれる． □

補題 2.8 M を体の拡大 L/K の中間体とし，α1, · · · , αm ∈ M，β1, · · · , βn ∈ L

とする．
α1, · · · , αm が K 上 M を生成し，かつ β1, · · · , βn が M 上 L を生成する

ならば，mn 個の L の元 αiβj (i = 1, · · · ,m, j = 1, · · · , n) は K 上 L を生成
する．
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証明 任意の γ ∈ L が，mn 個の元 αiβj の K 上の 1次結合で表されることを確かめる．
いま，β1, · · · , βn が M 上 L を生成するので，

γ =

n∑
j=1

bjβj

をみたす bj ∈ M が存在する． さらに，α1, · · · , αm が K 上 M を生成するという仮定
から，

bj =

m∑
i=1

aijαi (j = 1, . . . , n)

となる aij ∈ K がとれる． よって，

γ =

n∑
j=1

(
m∑
i=1

aijαi

)
βj =

m∑
i=1

n∑
j=1

aijαiβj

と書け，γ が αiβj たちの K 上の 1次結合で表されることがいえた． □

定理 2.9 M を体の拡大 L/K の中間体とすると，
[L : K] = [L : M ][M : K]

が成り立つ． とくに，L/K が有限次拡大であるためには，L/M，M/K がとも
に有限次拡大であることが必要十分である．

証明 α1, · · · , αm を M の K 上の基底，β1, · · · , βn を L の M 上の基底とすると，
m = [M : K], n = [L : M ].

ここで，補題 2.7より，mn 個の元 αiβj は K 上 1次独立だから
[L : K] ≥ mn = [L : M ][M : K],

一方，補題 2.8より，L は K 上 mn 個の元によって生成されるから，
[L : K] ≤ mn = [L : M ][M : K]

が成り立ち，したがって等式が導かれる． □

例 2.10 K = Q
(√

7
)
, M = Q

(
3
√
5
) とおき，さらに L = Q

(√
7, 3
√
5
) とおく．

K,M はどちらも L/Q の中間体だから，例 2.6 を使えば
[L : Q] = [L : K][K : Q] = 2[L : K], [L : Q] = [L : M ][M : Q] = 3[L : M ],

よって，[L : Q] は 2, 3 の公倍数，すなわち 6 の倍数であり，[L : Q] ≥ 6 を得る．
一方，L = M

(√
7
) より，L は M 上 2個の元 1,

√
7 で生成され，[L : M ] ≤ 2，

よって [L : Q] ≤ 6 が導かれる． したがって，[L : Q] = 6 が得られた．
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§3. 代数的元

定義 3.1 L/K を体の拡大とし α ∈ L とする． α を根とする K 上の零でない
多項式が存在するとき，すなわち，

∃f(X) ∈ K[X]− {0} s.t. f(α) = 0

であるとき，α は K 上代数的であるという． K 上代数的でない元は，K 上超越
的であるといわれる．

次の補題は上の定義から直ちに導かれる．

補題 3.2 L/K を体の拡大とし α ∈ L とする． α が K 上代数的ならば，L/K

の任意の中間体 M について，α は M 上代数的である．

例 3.3 (1) 体 K のすべての元は K 上代数的である．
(2)

√
3,

1 +
√
2

3
√
5
は，どちらも Q 上代数的である．

(3) 円周率 π は Q 上超越的である（Lindemannの定理 (1882)）．
(4) 自然対数の底 e は Q 上超越的である（Hermiteの定理 (1873)）．

以下，L/K を体の拡大とし α ∈ L とする．いま，α が K 上代数的であるかな
いかにかかわらず，写像

φα : K[X] −→ L, g(X) 7→ g(α)

を考えることができる． φα は可換環の準同型写像であり，その像は K[α] だか
ら，準同型定理によって K[X]/Kerφα は K[α] と同型;

K[X]/Kerφα
∼= K[α].

ここで，核は α を根とする K 上の多項式全体
Kerφα = { f(X) ∈ K[X] | f(α) = 0 }

であり，K[X] のイデアルである．

補題 3.4 α が K 上代数的であれば，K[α] は体である． よって，K[α] = K(α)

であり，変数 X の属する類を α に対応させることによって，体の同型
K[X]/Kerφα

∼= K(α)

が得られる．
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証明 可換環の同型 K[X]/Kerφα
∼= K[α] において，K[α] は体 L の部分環だから整

域，したがって Kerφα は K[X] の素イデアルである． ここで，α が K 上代数的だか
ら，Kerφα 6= (0) である． よって，K[X] が PIDであることを考慮すると，Kerφα は
K[X] の極大イデアル，したがって K[α] は体である． □

注意 α が K 上超越的ならば，Kerφα = (0)，すなわち K[X] ∼= K[α] である．
とくに，K[α] は体ではない．

補題 3.5 α が K 上代数的で，f(X) が α を根にもつ K 上の m 次多項式
（m > 0）ならば，K(α) は K 上のベクトル空間として 1, α, α2, . . . , αm−1 によっ
て生成される． とくに

[K(α) : K] ≤ m = deg f.

証明 前補題から K[α] = K(α) であることに注意すれば，任意の β ∈ K(α) に対して，
β = g(α) をみたす g(X) ∈ K[X] が存在する． このとき，

g(X) = q(X)f(X) + r(X), r(X) = 0 または deg r < m = deg f

をみたす q(X), r(X) ∈ K[X] がとれるが，f(α) = 0 より
β = g(α) = q(α)f(α) + r(α) = r(α).

そこで，r(X) = a0 + a1X + a2X
2 + · · ·+ am−1X

m−1 ∈ K[X] と表しておけば
β = a0 + a1α+ a2α

2 + · · ·+ am−1α
m−1 (ai ∈ K)

と書けるから，K(α) は K 上 1, α, α2, . . . , αm−1 によって生成される． □

補題 3.6 K(α)/K が有限次拡大ならば，α を根にもつ多項式 f(X) ∈ K[X] で
[K(α) : K] = deg f

をみたすものが存在する． とくに，α は K 上代数的である．

証明 n = [K(α) : K] とすると，n + 1 個の元 1, α, α2, . . . , αn は K 上 1次従属，よっ
て（どれかは 0 ではない）ci ∈ K が存在して

c0 + c1α+ c2α
2 + · · ·+ cnα

n = 0

が成り立つ． そこで，f(X) ∈ K[X] を
f(X) = c0 + c1X + c2X

2 + · · ·+ cnX
n

と定めれば，f(X) は α を根とする零でない K 上の多項式であり，補題 3.5より
[K(α) : K] ≤ deg f ≤ n.

さらに，n の定義より，不等号は等号に置き換わり [K(α) : K] = deg f を得る． □
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定理 3.7 α に対して次は同値である．
(i) α は K 上代数的である．
(ii) K(α)/K は有限次拡大である．

証明 補題 3.5と補題 3.6からわかる． □

定理 3.8 α が K 上代数的であるとき，α を根にもつ f(X) ∈ K[X] に対して次
は同値である．
(i) f(X) は K 上既約である．
(ii) Kerφα = (f(X))．
(iii) [K(α) : K] = deg f．
(iv) f(X) の次数は最小である．すなわち，g(X)( 6= 0) ∈ K[X] が α を根にも

つならば，deg f ≤ deg g．

証明 まず，f(α) = 0 より f(X) ∈ Kerφα，言い換えれば (f(X)) ⊂ Kerφα が成り立つ
ことに注意する．
(i)⇒(ii): (i) を仮定すれば，単項イデアル (f(X)) は極大イデアルなので，(ii) を得る．
(ii)⇒(iii): 補題 3.5から [K(α) : K] ≤ deg f が成り立つ． とくに K(α)/K は有限次だ
から，補題 3.6を用いれば，[K(α) : K] = deg g をみたす g(X) ∈ Kerφα がとれ，さらに
仮定 (ii) より g(X) = f(X)h(X) (h(X) ∈ K[X]) と表される． よって

[K(α) : K] ≤ deg f ≤ deg f + deg h = deg g = [K(α) : K],

したがって [K(α) : K] = deg f を得る．
(iii)⇒(iv): 補題 3.5からすぐにわかる．
(iv)⇒(i): f(X) が K 上可約だとすると，

f(X) = g(X)h(X), 1 ≤ deg g, deg h < deg f

をみたす g(X), h(X) ∈ K[X] が存在する． ここで g(α)h(α) = f(α) = 0 だから，
g(α) = 0 または h(α) = 0 である． g(α) = 0 のとき，仮定 (iv) より deg f ≤ deg g と
なって g(X) の取り方に矛盾する． h(α) = 0 の場合も同様に矛盾する．よって f(X) は
K 上既約でなければならない． □

定義 3.9 前定理の (i)-(iv)のどれか（したがってすべて）をみたす多項式 f(X) ∈
K[X] のうちモニックなものは一意的に定まる． これを α の K 上の最小多項式
という． ここで，モニックな多項式とは，最高次の係数が 1，すなわち

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0

の形をした多項式のことである．
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定理 3.10 α が K 上代数的ならば，α の K 上の最小多項式が存在する．

証明 定理 3.7，補題 3.6および最小多項式の定義から直ちに導かれる． □

定理 3.11 K(α)/K が有限次拡大で [K(α) : K] = n ならば，

1, α, α2, · · · , αn−1

は K 上ベクトル空間としての K(α) の基底である．

証明 f(X) を α の K 上の最小多項式とすると，n = deg f である． さらに f(α) = 0

であるから，補題 3.5から，n 個の元 1, α, · · · , αn−1 は K 上 K(α) を生成している．一
方，K(α) は K 上 n 次元のベクトル空間だから，これらは基底となる． □

例 3.12 (1)
√
3 の Q 上の最小多項式は X2 − 3．

(2) 1−
√
5 の Q 上の最小多項式は X2 − 2X − 4.

(3)
1
3
√
7
の Q 上の最小多項式は X3 − 1

7
．

(4)
√
2 + 3

√
3 の Q 上の最小多項式は X6 − 6X4 − 6X3 + 12X2 − 36X + 1．

最後の例は，たとえば，以下を順に示すことで得られる; ただし，

α =
√
2 +

3
√
3, f(X) = X6 − 6X4 − 6X3 + 12X2 − 36X + 1

とする．

(a) f(α) = 0 より [Q(α) : Q] ≤ deg f = 6 (補題 3.5)

(b) 3
√
3 = α−

√
2 の両辺を 3乗することにより，√

2 ∈ Q(α)

(c) Q(α) = Q(
√
2, 3
√
3)

(d) [Q(α) : Q] は 2 でも 3 でも割り切れる (定理 2.9)から，[Q(α) : Q] ≥ 6

(e) (a), (d) をあわせて，[Q(α) : Q] = 6 = deg f

(f) f(X) は α の最小多項式であり，さらに Q 上既約である (定理 3.8)．
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§4. 代数拡大

定義 4.1 L/K を体の拡大とする． L の任意の元が K 上代数的であるとき，L

は K 上代数的であるという． また，L/K を代数拡大という． L が K 上代数的
でないとき，L は K 上超越的であるといい，L/K を超越拡大という．

命題 4.2 有限次拡大は代数拡大である．

証明 L/K を有限次拡大とする． 任意の α ∈ L に対して，L/K の中間体である K(α)

は，定理 2.9 より K 上の有限次拡大体だから，定理 3.7 によって，α は K 上代数的であ
る． L の任意の元が K 上代数的あることが示されたから，L/K は代数拡大である．□

命題 4.3 体の拡大 L/K に対して次は同値である．

(i) L/K は有限次拡大である．
(ii) K 上代数的な有限個の元 α1, · · · , αn ∈ L が存在して，L = K(α1, · · · , αn)

が成り立つ．

証明 (i)のとき，ベクトル空間としての L の K 上の基底 α1, · · · , αn をとれば，前命題
よりこれらはすべて K 上代数的であり，(ii)が導かれる． 逆に，(ii)のときは，

K0 = K, K1 = K0(α1), K2 = K1(α2), . . . , Kn = Kn−1(αn)

とおけば，各 i = 1, . . . , n について，αi は Ki−1 上代数的だから，定理 3.7より Ki/Ki−1

は有限次，よって，定理 2.9 から L = Kn は K 上有限次であり，(i)を得る． □

定理 4.4 M を体の拡大 L/K の中間体とするとき，次は同値である．

(i) L/K は代数拡大である．
(ii) L/M, M/K はともに代数拡大である．

証明 (i)ならば (ii)が成り立つのはあきらかなので，以下，(ii)を仮定して (i)，すなわ
ち，任意の α ∈ L が K 上代数的であることを確かめればよい． (ii)より L/M は代数的
だから，α は M 上代数的，したがって，α を根とする M 上の零でない多項式

g(X) = c0 + c1X + · · ·+ cnX
n (ci ∈ M)
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が存在する． いま，M0 = K(c0, c1, . . . , cn) とおくと，α は M0 上代数的であるから，定
理 3.7より M0(α)/M0 は有限次である．一方，仮定 (ii)より M/K も代数的なので ci は
K 上代数的，よって，前命題より M0/K は有限次である． したがって，定理 2.9 から，
M0(α)/K は有限次拡大であり，さらに命題 4.2から代数拡大でもある． とくに α は K

上代数的である． □

例 4.5 自然数 n に対して，Xn − 1 = 0 の根である複素数全体を Wn とする;

Wn = { z ∈ C | zn = 1 } .

いま，
ζn = e

2π
√
−1

n = cos
2π

n
+
√
−1 sin

2π

n

とおけば，Wn = { ζjn | j = 0, 1, . . . , n− 1 } と具体的にかけ，これが Xn − 1 の根
全体の集合と一致する．よって，命題 4.3より Q(Wn)/Q は有限次，したがって，
命題 4.2より代数拡大である（実際には，Q(Wn) = Q(ζn) が成り立っているので，命題
4.3は必要とせず，定理 3.7を使えばよい）．とくに n が素数 p の場合，ζp は Xp − 1

の既約因子 Xp−1 +Xp−2 + · · ·+X + 1 の根だから，定理 3.8より，
[Q(Wp) : Q] = [Q(ζp) : Q] = p− 1.

この等式は，任意の自然数 n に対して，オイラー関数 φ を用いた等式
[Q(Wn) : Q] = [Q(ζn) : Q] = φ(n)

に拡張されるが，証明は少し難しい．

補題 4.6 L/K を体の拡大とし，A ⊂ L とすると，K(A) は A の有限部分集合
B のすべてを走らせることにより

K(A) =
⋃
B

K(B)

と表される． すなわち，任意の α ∈ K(A) に対して，α ∈ K(β1, · · · , βn) である
ような有限個の β1, · · · , βn ∈ A がとれる．

証明 M =
⋃
B

K(B) とおく． このとき，M ⊂ K(A) は直ちにわかる． 一方，あきらか

に K ⊂ M であり，また A ⊂ M もすぐにわかるから，M が体であれば K(A) ⊂ M，し
たがって補題を得る． 以下，M が体であることを確かめる． M の任意の元 β, γ 6= 0 に
対して，β ∈ K(B)，γ ∈ K(C) をみたす A の有限部分集合 B,C がとれる． D = B ∪C

とおけば，D も A の有限部分集合であって β, γ ∈ K(D) であるが，K(D) は体なので，
β, γ の和，差，積，商は K(D) に属する． さらに K(D) ⊂ M なので，これらは M に
属する． よって，M は体である． □
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定理 4.7 L/K を体の拡大とし，A ⊂ L とする． A の任意の元が K 上代数的
ならば K(A)/K は代数拡大である．

証明 任意の α ∈ K(A) に対して，前補題から，α ∈ K(β1, · · · , βn) をみたす βi ∈ A が
とれる． 仮定より βi は K 上代数的だから，拡大 K(β1, · · · , βn)/K は，命題 4.3より有
限次，よって命題 4.2より代数的，とくに α は K 上代数的である． □

系 4.8 L/K を体の拡大とする． α, β ∈ L (β 6= 0) がともに K 上代数的なら
ば，それらの和と差 α± β，積 αβ，商 α/β はどれも K 上代数的である．

証明 前定理より K(α, β) は K 上代数的であり，α± β, αβ, α/β ∈ K(α, β) だから結論
を得る． □

例 4.9 複素数平面における単位円を S とする．また，ある自然数 n に対して，
zn = 1 をみたす複素数全体を W で表す．

S = { z ∈ C | |z| = 1 } =
{
x+ iy ∈ C | x, y ∈ R, x2 + y2 = 1

}
,

W = { z ∈ C | ∃n ∈ N s.t. zn = 1 } =
∞⋃
n=1

Wn.

すべての n ∈ N について，Wn ⊂ W ⊂ S，したがって Q(Wn) ⊂ Q(W ) ⊂ Q(S)．
このとき，以下が成り立つ．

(1) Q(W )/Q は有限次ではない代数拡大である．
(2) Q(S)/Q は超越拡大である． したがって Q(S)/Q(W ) も超越拡大である．

(1)は，定理 4.7および例 4.5から容易に証明できる． また，0 < ε < 1 をみたす
Q 上超越的な実数 ε（たとえば ε = π/4 など . . .）をとれば，√

1− ε2 + εi は S

に属し，Q 上超越的であることが確かめられるから，(2)も示される．

命題 4.10 L/K を体の拡大とし，M をその中間体とする． α ∈ L が K 上代数
的であるとき，

[M(α) : M ] ≤ [K(α) : K]

が成り立つ．
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証明 α の K 上の最小多項式を f(X) とすると，deg f = [K(α) : K]． 一方，f(X) は
M 上の多項式でもあるから，補題 3.5より，[M(α) : M ] ≤ deg f であり，求める不等式
を得る． □

例 4.11 X3 − 1 の 1 でない根のひとつを ω とする（1 の原始 3乗根）． この
とき，ω, ω2 は X2 +X + 1 の 2根である． X3 − 2 の実根を α とすれば，他の
根は αω, αω2 で与えられる． X3 − 2 は Q 上既約だから，定理 3.8より Q(α)/Q

は 3次拡大である． このとき，

(a) M1 = Q(ω) とおけば，[M1(α) : M1] = 3 = [Q(α) : Q],

(b) M2 = Q(αω) とおけば，[M2(α) : M2] = 2 < 3 = [Q(α) : Q]

が成り立ち，それぞれ，前命題において，等号が成り立つ例，成り立たない例と
なっている．

定義 4.12 Ω/K を体の拡大とし，L,M をその中間体とするとき，L,M をと
もに含む Ω の最小の部分体を L,M の合成体といい LM で表す． すなわち，
LM = L(M) = M(L) である．

定理 4.13 L,M を体の拡大 Ω/K の中間体とする． L/K が有限次拡大ならば，

[LM : M ] ≤ [L : K]

が成り立ち，とくに，LM/M も有限次拡大である．

証明 命題 4.3より，L = K(α1, . . . , αn) をみたす K 上代数的な元 αi がとれる． そこ
で，体の拡大列 K0 ⊂ K1 ⊂ · · · ⊂ Kn および M0 ⊂ M1 ⊂ · · · ⊂ Mn を

K0 = K, K1 = K0(α1), K2 = K1(α2), . . . , Kn = Kn−1(αn)

M0 = M, M1 = M0(α1), M2 = M1(α2), . . . , Mn = Mn−1(αn)

と定めれば，命題 4.10より [Mi : Mi−1] ≤ [Ki : Ki−1]．さらに，L = Kn かつ LM = Mn

だから，定理 2.9 を何度か適用して

[LM : M ] = [Mn : Mn−1] · · · [M1 : M0] ≤ [Kn : Kn−1] · · · [K1 : K0] = [L : K]

が導かれる． □
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§5. 根の添加

以下で扱う準同型写像はどれも零写像ではないとする． このとき，
体から（単位元をもつ）環への準同型写像は単射

であることに注意する． 【理由】 体 K から環 R への準同型写像 σ : K → R の核
Kerσ は体 K のイデアルだから，{0} または K のどちらかであるが，いま，σ は零写像
ではないとしているので，Kerσ = {0}． したがって σ は単射である．

とくに，体から体への準同型写像が以下で頻繁に現れるが，これらはすべて単
射準同型である．

定義 5.1 L/K を体の拡大とする． σ : L → M, τ : K → M がそれぞれ
L,K から体 M への準同型写像であって，

∀a ∈ K に対して σ(a) = τ(a)

をみたすとき，σ は τ の L への延長，あるいは，τ は σ の K への制限であると
いう． また，このとき τ = σ|K と表す．

定義 5.2 L, M がともに体 K の拡大体で，準同型写像 σ : L → M が K の
恒等写像 idK : K → K の延長であるとき，つまり，すべての a ∈ K について
σ(a) = a が成り立つとき，σ を K 上の準同型写像という．

定義 5.3 体 L から体 M への準同型写像 σ : L → M が全射であるとき，σ を
同型写像といい，L と M は同型であるという． このとき

L ∼= M

と表すことが多い．

定義 5.4 可換環 R から可換環 S への準同型写像
σ : R −→ S

が与えられたとき，R 上の多項式 f(X) ∈ R[X] に対して，その係数に σ をほど
こして得られる S 上の多項式を fσ(X) と表す．すなわち，f(X) =

∑
ciX

i のと
き fσ(X) =

∑
σ(ci)X

i と定める． このようにして，多項式環の間の準同型写像
R[X] −→ S[X]. f(X) 7→ fσ(X)

が自然に定義される．
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定理 5.5 f(X) が体 K 上の既約多項式ならば，剰余環 K[X]/(f(X)) は体であ
る． ここで，

包含写像 ι : K −→ K[X], 自然な全射 ν : K[X] −→ K[X]/(f(X))

の合成写像として
σ = ν ◦ ι : K −→ K[X]/(f(X))

を定めると，σ は体の準同型写像である． さらに，α ∈ K[X]/(f(X)) を
α = ν(X) = X + (f(X))

と定めれば（すなわち，X の属する K[X]/(f(X))の類を α とすれば），fσ(α) = 0

が成り立つ．

証明 K[X] は PIDだから，既約元で生成されるイデアル (f(X)) は極大イデアルであ
り，したがって，それによる剰余環 K[X]/(f(X)) は体である． また，ι，ν はどちらも
準同型写像だから，σ は準同型写像である． いま，

f(X) = c0 + c1X + · · ·+ cnX
n (ci ∈ K)

とすれば，ι(ci) = ci ∈ K ⊂ K[X] だから，σ(ci) = ν(ci)，したがって
fσ(α) = ν(c0) + ν(c1)ν(X) + · · ·+ ν(cn)ν(X)n = ν(f(X)) = 0

となる． □

定理 5.6 (クロネッカー) 体 K 上の定数でない任意の多項式 f(X) に対して，K

の拡大体 L とその元 α で f(α) = 0 をみたすものが存在する．

証明 f(X) の K 上の既約因子をあらためて f(X) とおくことにより，初めから f(X) は
K 上の既約多項式であるとしてよい．このとき，L = K[X]/(f(X))，α = X+(f(X)) ∈ L

とおけば，定理 5.5 より，L は体であり，単射準同型写像 σ : K → L が定義できて，
fσ(α) = 0 をみたす． そこで，σ の像 σ(K) を K と同一視すればよい． □

注意 定理 5.6から，K 上の既約多項式 f(X) に対して，K の拡大体 L と f(X)

の根 α ∈ L が存在する． この α を用いて，準同型写像
φα : K[X] −→ L, g(X) 7→ g(α)

が定義できて，Imφα = K(α) ⊂ L がわかる（§3 を参照）．一方，Kerφα が K[X]

のイデアル (f(X)) に一致することが，f(X) の K 上の既約性から確認できる（定
理 3.8参照）． したがって，準同型定理より，φα は同型写像

φ̃α : K[X]/(f(X)) −→ K(α)

を引き起こす． なお，定理 5.5の準同型写像 σ と φ̃α との合成 φ̃α ◦ σ は，K か
ら K(α) への包含写像に他ならない．
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例 5.7 X2 + 1 は実数体 R 上の既約多項式であり，その根 i に対して，R(i)

は剰余環 R[X]/(X2 + 1) と同型である． C = R(i) とかけば，

C ∼= R[X]/(X2 + 1).

1, i は C の R 上の基底であって，C の任意の元は a+ bi (a, b ∈ R) の形に一意
的に表される． ここで，C の２元

a+ bi, c+ di (a, b, c, d ∈ R)

に “対応”する多項式 a+ bX, c+ dX ∈ R[X] の積

ac+ (ad+ bc)X + bdX2 = (ac− bd) + (ad+ bc)X + bd(X2 + 1)

は，R[X]/(X2+1) においては (ac− bd)+ (ad+ bc)X と同じ類に属する．つまり

(a+ bX)(c+ dX) ≡ (ac− bd) + (ad+ bc)X (mod (X2 + 1))

であり，これはよく知られた複素数における積の公式

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

に対応する． この例は，虚数単位 i を導入しなくても複素数体が構成できること
を示している．

例 5.8 f(X) = X3 − 4X + 2 は Q 上既約であり，その任意の根 α に対して，
Q(α) は剰余環 Q[X]/(f(X)) と同型である;

Q(α) ∼= Q[X]/(f(X)).

1, α, α2 は Q(α) の Q 上の基底であり，Q(α) の任意の元は 1, α, α2 の Q 上の 1

次結合で表される． たとえば

β = 1 + α2, γ = 3− 2α + α2

の積は，次の様に計算される． まず，多項式の積を計算して得られる 4次式

(1 +X2)(3− 2X +X2) = X4 − 2X3 + 4X2 − 2X + 3

を f(X) で割って

X4 − 2X3 + 4X2 − 2X + 3 = (X − 2)f(X) + (8X2 − 12X + 7).

このとき，余り 8X2 − 12X + 7 に対応する Q(α) の元が βγ である． こうして，
積 βγ = 7− 12α + 8α2 が計算できた．
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例 5.9 g(X) = X3+X2+X+1は Q上既約ではなく，g(X) = (X+1)(X2+1)の
ように Q 上の既約因子に分解される．この分解に対応して，剰余環 Q[X]/(g(X))

は
Q[X]/(g(X)) ∼= (Q[X]/(X + 1))⊕

(
Q[X]/(X2 + 1)

) ∼= Q⊕Q(i).

のように体の直和と同型になることが確かめられる． 一般に，体 K 上の多項式
g(X) が可約であってかつ重根をもたないならば，剰余環 K[X]/(g(X)) は複数個
の体の直和と同型である．

定理 5.10 体 K 上の既約多項式 f(X) とその任意の 2根 α, β に対して，K 上
の同型写像

σ : K(α) −→ K(β)

で，σ(α) = β をみたすものが存在する．

証明 定理 5.6の後の注意より，g(X) ∈ K[X] を g(α) または g(β) に写すことで定まる
準同型写像

K[X] −→ K(α), K[X] −→ K(β)

は，同型写像
τ : K[X]/(f(X)) −→ K(α), ρ : K[X]/(f(X)) −→ K(β)

をそれぞれ引き起こす． このとき，σ = ρ ◦ τ−1 が求める同型写像となる． □

例 5.11 X2 +1 のひとつの根を i とすれば，もうひとつの根は −i である．こ
のとき，C = R(i) から自分自身への写像

C −→ C, a+ bi 7→ a− bi （ただし a, b ∈ R）

が R 上の同型写像になっている． この写像は，ふつう複素共役写像とよばれる．

例 5.12 X3 − 2 は Q 上既約であり，その実根を α = 3
√
2 とすると，他の

根は αω, αω2（ ω = e2πi/3 は 1の原始 3乗根）である． このとき，3つの体
Q(α), Q(αω), Q(αω2) は互いに同型である． より具体的には，写像

σ : Q(α) −→ Q(αω), a+ bα + cα2 7→ a+ bαω + cα2ω2

τ : Q(α) −→ Q
(
αω2

)
, a+ bα + cα2 7→ a+ bαω2 + cα2ω

が Q 上の同型写像となっている（a, b, c ∈ Q）． Q(α) は実数体の部分体であり，
Q(αω) と Q(αω2) は実数体には含まれていないが，これら 3つの体は代数的には
同等の性質をもっている．
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§6. 代数的閉体と共役元

定義 6.1 体 L の代数拡大体が L のみであるとき，L を代数的閉体という．

つまり，L が代数的閉体であるとは，L のどんな拡大体 M をとっても，『α ∈ M

が L 上代数的ならば α ∈ L』 となることである．

例 6.2 (1) C は代数的閉体である（代数学の基本定理）．
(2) R は代数的閉体ではない．

定理 6.3 体 L に対して次は同値である．
(i) L は代数的閉体である．
(ii) L 上の 2 次以上の任意の多項式は K 上可約である．
(iii) L 上の定数でない任意の多項式は L 上の 1次式の積として表される．
(iv) L 上の定数でない任意の多項式は L で根をもつ．

証明 (i)⇒(ii): L 上の既約多項式 f(X) が，仮定 (i)の下で 1 次であることを確かめれ
ばよい．クロネッカーの定理（定理 5.6）より，L の拡大体 M と α ∈ M で f(α) = 0 を
みたすものがとれるが，仮定 (i)より α ∈ L であるから，deg f = [L(α) : L] = 1 を得る．
(ii)⇒(iii): 一般に体上の多項式環は UFD である． とくに，L 上の定数でない任意の多
項式は，L 上の既約多項式の積として表されるから，仮定 (ii)より (iii)が導かれる．
(iii)⇒(iv): あきらか．
(iv)⇒(i): M/L を代数拡大とするとき，任意の α ∈ M に対して，α ∈ L であることを確
かめればよい． いま，α の L 上の最小多項式を f(X) とすると，仮定 (iv)より，f(X)

は根 β ∈ L をもつ． 一方，定理 5.10より L(α) と L(β) は L 上同型であり，とくに L

上の次数は等しいから [L(α) : L] = [L(β) : L] = 1，ゆえに L(α) = L，すなわち α ∈ L

でなければならない． □

定義 6.4 体 K の代数拡大体であって代数的閉体であるものを K の代数的閉包
という．

定理 6.5 Ω が代数的閉体ならば，Ω に含まれる任意の部分体に対して，その代
数的閉包が Ω の中に一意的に存在する．
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証明 （存在すること） K を Ω の任意の部分体とする． K 上代数的な Ω の元全体

L = {α ∈ Ω |α は K 上代数的 }

は，定理 4.7または系 4.8を用いれば，K 上の代数拡大体であることがわかる． そこで，
以下，L が代数的閉体であることを示す． f(X) を L 上の定数でない任意の多項式とす
る． f(X) は Ω 上の多項式でもあるが，Ω が代数的閉体であるという仮定から，定理 6.3

(iv)を用いれば，f(α) = 0 である α ∈ Ω がとれる． また，f(α) = 0 より α は L 上代
数的であるが，L/K が代数拡大であることに注意すれば，定理 4.4より α は K 上代数
的，よって，L の定義から α ∈ L である． そこで，再び定理 6.3 (iv)を用いて，L が代
数的閉体であることが導かれる．
（一意性） Ω の部分体 L1, L2 がどちらも K 上の代数的閉包であるとする． 任意の
α ∈ L1 に対して，α は K 上代数的だから，もちろん L2 上も代数的だが，L2 は代数
的閉体なので α ∈ L2． したがって L1 ⊂ L2． 役割を入れ替えれば L2 ⊂ L1 も導かれ，
L1 = L2 が得られた． □

例 6.6 (1) C は R の代数的閉包である．
(2) Q の代数的閉包は C の中で一意的に定まるが，それは C ではない．
(3) L が K の代数的閉包ならば，L/K の任意の中間体 M は K 上の代数拡

大体であり，さらに L は M の代数的閉包でもある．

定理 6.7（シュタイニッツ） 任意の体 K に対してその代数的閉包が存在する．
さらに，L1, L2 がどちらも体 K の代数的閉包ならば，K 上の同型写像 L1 → L2

が存在する．

証明 (方針のみ) K 上の代数拡大体全体 A は，包含関係を順序とする順序集合 (A,⊂)

となっている． このとき，(A,⊂) は帰納的である． 実際，S を A の全順序部分集合と
すると，M0 =

⋃
M∈S M はあきらかに A に属し S の上限となっている． したがって，

ツォルンの補題により A は極大元 L をもつ． L/K は代数拡大だから，もし E/L が代
数拡大ならば，定理 4.4より，E/K も代数拡大，よって E ∈ A となるから L の極大性
より E = L でなければならい． このことは L が代数的閉体であること示している． し
たがって，L は K 上の代数的閉包である． 後半（同型写像の存在）もツォルンの補題を
用いて証明できるが，ここでは省略する． （じつは，A が集合として定義されるかどう
か疑わしいという意味で，この証明は不完全である．単に “K 上の代数拡大体全体”とい
うだけではなく，何らかの集合論的な制約を加えてAを定義しなおす必要がある．） □

以下において，体 K に対して，代数的閉包をひとつ固定し K で表す．
K 上の任意の代数拡大体はK/K の中間体とK 上同型になる．なぜなら，M/K

を任意の代数拡大とすると，M の代数的閉包 L は K の代数的閉包でもあるから，
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前定理より，K 上の同型写像 L → K が存在し，それによる M の像は K/K の
中間体となるからである．
そこで，とくに断らない限り以下では K 上の代数拡大体は K/K の中間体であ
り，また K 上代数的な元も K に属しているものとする．
定義 6.8 体の拡大 L/K に対して，L から L への K 上の同型写像を，L の
K 上の自己同型写像，または L/K の自己同型写像という．それら全体の集合は，
写像の合成に関して群になっている． それを Aut(L/K) で表し，L の K 上の自
己同型群，または L/K の自己同型群という;

Aut(L/K) = {σ | σ : L → L, K 上の同型写像 } .

σ, τ ∈ Aut(L/K) の合成 σ ◦ τ を，積のように στ で表す．

定理 6.9 L が K/K の中間体で，
τ : L −→ K

が K 上の準同型写像であるとする． このとき，τ の延長 σ ∈ Aut(K/K) が存在
する． すなわち，K 上の同型写像

σ : K −→ K

で，任意の a ∈ L に対して σ(a) = τ(a) であるものがとれる．

この証明も，ふつうツォルンの補題を使って行われる． 少し面倒なので省略する．

定義 6.10 K を体とする． α, β ∈ K それぞれの K 上の最小多項式が一致する
とき，α, β は K 上共役であるという． また，β を α の K 上の共役元ともいう．
α の K 上の共役元全体の集合を Conj(α,K) で表す． 言い換えると，α の K 上
の最小多項式の（K における）根全体の集合が Conj(α,K) である．

定理 6.11 体 K と α, β ∈ K に対して次は同値である．
(i) α, β は K 上共役である．
(ii) σ(α) = β をみたす σ ∈ Aut(K/K) が存在する．

証明 (i)⇒(ii): (i) を仮定すると，定理 5.10より，K 上の同型写像
τ : K(α) −→ K(β) ⊂ K

で τ(α) = β であるものが存在する． そこで，定理 6.9を適用すれば (ii) が得られる．
(ii)⇒(i): f(X) を α の K 上の最小多項式とすれば，(ii) のような σ ∈ Aut(K/K) に対
して，

f(β) = f(σ(α)) = σ(f(α)) = 0.

これは，f(X) が β の K 上の最小多項式でもあることを示しているから，(i) を得る．□
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系 6.12 体 K と α ∈ K に対して，
Conj(α,K) =

{
σ(α)

∣∣ σ ∈ Aut(K/K)
}

が成り立つ．

例 6.13 z ∈ C の複素共役 z̄ は，z のR上の共役元であり，Conj(z,R) = {z, z̄}，
さらに Aut(C/R) は複素共役写像を生成元とする位数 2の巡回群である．

定理 6.14 体 K と α ∈ K に対して，
|Aut(K(α)/K)| ≤ |Conj(α,K)| ≤ [K(α) : K]

が成り立つ．

証明 σ ∈ Aut(K(α)/K) に対して σ(α) ∈ Conj(α,K) を対応させることにより，単射
Aut(K(α)/K) −→ Conj(α,K)

が定まり，前半の不等式が導かれる． 次に，f(X) を α の K 上の最小多項式とすると，
|Conj(α,K)| = “f(X) の根の個数” ≤ deg f = [K(α) : K]

を得る． □

注意 “f(X) の根の個数” ≤ deg f としたのは，f(X) が重根をもつ可能性があ
るからである． 重根をもたない場合，根の個数は次数と一致する．

例 6.15
√
2 の Q 上の最小多項式は X2 − 2，したがって

Conj(
√
2,Q) = {

√
2, −

√
2 }.

また，σ ∈ Aut(Q
(√

2
)
/Q) とすると，σ(

√
2) = ±

√
2． 符号のとり方により，

σ = id（恒等写像）または σ(
√
2) = −

√
2 となるから，後者をあらためて σ と定

めれば，
Aut(Q(

√
2)/Q) = { id, σ }

となる．よって，定理 6.14の不等式はすべて等号になっている．

例 6.16 X3 − 2 の実根 α = 3
√
2 と他の根 αω, αω2 について，

Conj(α,Q) =
{
α, αω, αω2

}
.

一方，同型写像 Q(α) → Q(α) によって α は α にしか写らないから
Aut(Q(α)/Q) = { id } .

よって，この場合は定理 6.14の左の不等号は 1 < 3 となっていて，等号ではない．
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§7. 標数

K を体とする．自然数 n に対して 1 ∈ K の n 個の和を Γ(n) とする;

Γ(n) = 1 + · · ·+ 1︸ ︷︷ ︸
n

さらに，Γ(−n) = −Γ(n)，Γ(0) = 0 と定める．

補題 7.1 上で定めた写像
Γ : Z −→ K

は，可換環の準同型写像であり，その核は，p = 0または素数によって，Ker Γ = (p)

と表される（Ker Γ = pZ と表してもよい）．

証明 【準同型であること】 すべての m,n ∈ Z に対して
Γ(m+ n) = Γ(m) + Γ(n), Γ(mn) = Γ(m) Γ(n)

が成り立つことを確かめればよい． m,n のどちらかが 0 のときはあきらかに成り立つ．
m,n > 0 のときは数学的帰納法を用いて確認できる． n < 0 のときは Γ(−n) = −Γ(n)

を使って正のときに帰着させれればよい． m < 0 のときも同様である．
【核について】 Γ の像は体K の部分環なので整域である． よって，準同型定理より Γ

の核は Z の素イデアル，したがって KerΓ = (0)，または素数 p を用いて KerΓ = (p)

と表される． □

定義 7.2 体 K に対して，Ker Γ = (p) をみたす p ≥ 0 を K の標数という．

補題 7.1より，K の標数は 0 または素数である．さらに，整域 R に対しても同
様にして標数を定義することができ，その場合でも，標数は 0 または素数である．
写像 Γ を用いず直接的に標数を定義することもできる． K の単位元 1 を 2個
以上 p 個足し合わせて初めて 0 となる（すなわち

1 + · · ·+ 1︸ ︷︷ ︸
p

= 0

となる）とき，p は素数である（証明してみよ）．この p を K の標数とする． 1

をいくつ足し合わせても 0 にならないとき，K の標数を 0 とする．

定義 7.3 素数 p に対して
F p = Z/pZ

とかく． F p は p 個の元からなる有限体であって，標数は p である．
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定理 7.4 K を標数 p の体とする．
(1) p = 0 ならば，単射準同型

Q −→ K

が一意的に存在する． すなわち，K は有理数体 Q と同型な部分体をもつ．
(2) p > 0 すなわち p が素数ならば，単射準同型

F p −→ K

が一意的に存在する． すなわち，K は有限体 F p と同型な部分体をもつ．

証明 (1) n 6= 0 ならば Γ(n) 6= 0 なので，a =
m

n
∈ Q (m,n ∈ Z, n 6= 0) のとき，

Γ̃(a) =
Γ(m)

Γ(n)

とおくことによって
Γ̃ : Q −→ K

を定めることができる． Γ̃ が準同型写像であることを示すのは難しくない． よって Γ̃ は
単射準同型写像である． 次に一意性を示すために，

∆ : Q −→ K

も単射準同型であるとする．このとき，Γ̃(1) = 1 = ∆(1) であり，数学的帰納法を用いて
Γ̃(n) = ∆(n) がすべての n ∈ N に対して成り立つことがわかる． このことから，すべ
ての a ∈ Q に対して Γ̃(a) = ∆(a) を示すことは難しくない．
(2) Γ : Z → K の核が (p) = pZ であることから，準同型定理を適用すれば，単射準同
型写像

F p = Z/pZ −→ K

が得られる． 一意性については，F p の元が 1 + · · ·+ 1 と表されることを使えば，すぐ
にわかる． □

定理 7.5 K が有限体ならば，K の標数 p は素数であり，K は F p の有限次拡
大体と同型である．とくに，K が F p の n次拡大体と同型ならば，K は pn 個の
元からなる有限体である．

証明 前半は前定理からあきらかなので，後半のみ示す． K は F p の n次拡大体である
としてよい． α1, . . . , αn を K の F p 上の基底とすれば，K の任意の元は

c1α1 + · · ·+ cnαn (ci ∈ F p)

の形に一意的に表され，各 ci の取り方は p 通りだから，K の元の個数は pn である．□
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命題 7.6 p を素数とする．
(1) 体 K の標数が p > 0 ならば，任意の a, b ∈ K に対して

(a+ b)p = ap + bp

が成り立つ．
(2) F p 上の多項式 f(X) に対して，

f(X)p = f(Xp)

が成り立つ．

証明 (1) 二項定理より

(a+ b)p = ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp.

ここで，p は素数なので，1 ≤ j ≤ p− 1 のときの二項係数は(
p

j

)
=

p!

j! (p− j)!
≡ 0 (mod p).

よって，K において
(
p

j

)
ajbp−j = 0 となり，求める等式を得る．

(2) f(X) を具体的に
f(X) = cnX

n + cn−1X
n−1 + · · ·+ c1X + c0 (ci ∈ F p)

と表せば，(1)の証明と同様の議論を繰り返し使って
f(X)p = cpnX

np + cpn−1X
(n−1)p + · · ·+ cp1X

p + cp0.

ここで，フェルマーの定理より cpi = ci が成り立つから，
f(X)p = cn(X

p)n + cn−1(X
p)n−1 + · · ·+ c1X

p + c0 = f(Xp)

を得る． □

例 7.7 −1 は 3 を法として平方非剰余なので，X2+1 は F 3 上既約である．し
たがって，§5 の考察から，2次拡大 K/F 3 がとれて，K において X2 + 1 は根を
もつ． 実際には K は剰余環 F 3[X]/(X2 + 1) と同型であり，X の属する類に対
応する K の元を α とすると，具体的に

K = { 0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α } .

と書ける． ただし，F 3 = {0, 1, 2} とする． このとき，α2 = −1 に注意すれば
(1 + α)(2α) = 2α + 2α2 = 2α− 2 = 1 + 2α

のように積が計算できる（すべての積をチェックして，K の乗積表を作成してみよ）．
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例 7.8 任意の素数 p に対して，F p 上の 2次拡大体が存在することが以下のよ
うにしてわかる．
(1) p が奇素数の場合，p を法として平方非剰余である整数 u が存在するから，
前の例と同様にして，F p[X]/(X2 − u) と同型な F p 上の 2次拡大体が存在する．
(3) p = 2 の場合，X2 +X +1 が F 2 上既約であるから，やはり F 2 上の 2次拡
大体が存在する．

例 7.9 p を素数とし，K/F p を有限次拡大で n = [K : F p] とする． 写像 ϕ を
ϕ : K −→ K, α 7→ αp

によって定める． このような ϕ を K のフロベニウス写像という．
(1) ϕ は K から K への準同型写像である．
なぜなら，α, β ∈ K に対して，ϕ(αβ) = ϕ(α)ϕ(β) はあきらかであり，さらに定
理 7.6から ϕ(α + β) = ϕ(α) + ϕ(β) もいえるから．
(2) ϕ は F p 上の同型写像である． すなわち ϕ ∈ Aut(K/F p)．
なぜなら，a ∈ F p に対して ϕ(a) = ap = a がいえるから（フェルマーの定理）．
(3) 自然数 j に対して，ϕ の j 個の合成を ϕj とする;

ϕj = ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
j

さらに ϕ0 = id（恒等写像）とする． ϕj ∈ Aut(K/F p) である．
(4) 0 < j < n のとき，ϕj 6= id．
なぜなら，もし ϕj = id ならば，すべての α ∈ K に対して α = ϕj(α) = αpj だか
ら，K のすべての元は多項式 Xpj − X の根である． しかし，定理 7.5より，K

の元の個数は pn なので，pj 次多項式の根だけでは尽くせないはずなので矛盾．
(5) ϕj (0 ≤ j < n) は互いに相異なる．
なぜなら，もし ϕj = ϕk (0 ≤ j < k < n) ならば ϕk−j = id となって (4)に反する．
(6) Aut(K/F p) = {id, ϕ, ϕ2, . . . , ϕn−1}．
なぜなら，あきらかに Aut(K/F p) ⊃ {id, ϕ, ϕ2, . . . , ϕn−1}． (5)より右辺は n 個
の元をもつから |Aut(K/F p)| ≥ n． 一方，命題 15.1（§15 補遺参照）より，K×

は巡回群であり，その生成元を γ とすれば K = F p(γ) なので，定理 6.14が適用
できて |Aut(K/F p)| ≤ [K : F p] = n． よって，不等式はすべて等号に置き換わ
り，上の包含関係も等号で結ばれることがわかる．
(7) ϕn = id．
なぜなら，ϕn ∈ Aut(K/F p) だから，(6)より ϕn = ϕj (0 ≤ j < n) をみたす j が
ある． もし j > 0 ならば，ϕn−j = id かつ 0 < n − j < n であり (4)に反する．
したがって j = 0 であり ϕn = ϕ0 = id．
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§8. 分離拡大

定理 6.3より，体 K 上の多項式 f(X) は，K において X − α の形の 1次式の
積に分解される． 同じ 1次式をまとめてしまえば

f(X) = c (X − α1)
m1 (X − α2)

m2 · · · (X − αr)
mr

ただし c ∈ K, αi ∈ K, mi ∈ N

と表すことができる．ここで，α1, . . . , αr は f(X) の相異なる根のすべてである．
このとき，mi = 1 であるような αi を f(X) の単根といい，mi ≥ 2 である αi を
重根という．

定義 8.1 体 K 上の多項式 f(X) について，K におけるすべての根が単根であ
るとき，分離的であるという． 一方，K において重根をもつとき，非分離的であ
るという． 分離的な多項式を分離多項式，非分離的な多項式を非分離的多項式と
もいう．

定理 8.2 K を標数 0 の体，または有限体とすると，K 上の任意の既約多項式
は分離的である．

証明 K 上の既約多項式 f(X) が重根 α をもつとする． このとき

f(X) = (X − α)2g(X) (g(X) ∈ K[X])

とかけるが，微分すれば

f ′(X) = 2(X − α)g(X) + (X − α)2g′(X),

したがって，f(α) = f ′(α) = 0 となる． ここで，K が標数 0 の体ならば，f ′(X) は零多
項式ではなく，deg f ′(X) < deg f(X) が成り立つ． 一方で，f(X) は α の K 上の最小
多項式（の定数倍）なので矛盾する． そこで以下，K は標数 p > 0 の有限体であるとす
る． この場合でも，f ′(X) が零多項式でなければ同様に矛盾する． f ′(X) が零多項式で
あるとすると，簡単な考察から

f(X) = c0 + c1X
p + c2X

2p + · · ·+ cmXmp (ci ∈ K)

と書けることが確かめられる． 一方，定理 7.5 より |K| = pn (n ≥ 1) とかけるが，この
とき，任意の c ∈ K に対して cp

n
= c が成り立つから，とくに ci = bpi (bi ∈ K) と表す

ことができ，したがって

f(X) = bp0 + bp1X
p + bp2X

2p + · · ·+ bpmXmp =
(
b0 + b1X + b2X

2 + · · ·+ bmXm
)p

となって，f(X) の既約性に矛盾する． □
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定義 8.3 K を体とする． α ∈ K の K 上の最小多項式が分離的であるとき，α

は K 上分離的であるという．

定理 6.14の直後の注意から，次の定理を得る．

定理 8.4 K を体とする． α ∈ K について，次は同値である．
(i) α は K 上分離的である．
(ii) |Conj(α,K)| = [K(α) : K] が成り立つ．

補題 8.5 K を体とし，β, γ ∈ K とする． β が K 上分離的ならば，

K(β, γ) = K(α)

をみたす α ∈ K(β, γ) が存在する．

証明 K が有限体のとき: K の有限次拡大体である K(β, γ) も有限体なので，§15 補
遺で証明される命題 15.1『体の乗法群の有限部分群は巡回群である』を使えば，K(β, γ)×

は巡回群である． α をその生成元とすれば，K(β, γ) = K(α) が成り立つ．
K が無限体のとき: β, γ から定まる K の有限部分集合

S =

{
γ − γ′

β′ − β

∣∣∣∣β 6= β′ ∈ Conj(β,K), γ′ ∈ Conj(γ,K)

}
に属さない s ∈ K がとれる． α = γ + sβ とおく． このとき K(α) ⊂ K(β, γ) であるが，
一方で，もし β ∈ K(α) が示されれば，γ = α− sβ ∈ K(α) がいえて K(β, γ) = K(α) が
得られる． そこで，以下，β 6∈ K(α) を仮定して矛盾を導く． さて，β は K 上分離的だ
から K(α) 上も分離的であり，したがって定理 8.4より

|Conj(β,K(α))| = [K(α, β) : K(α)]

が成り立つが，β 6∈ K(α) を仮定したから右辺は 1より大きくなっている．よって，β′ 6= β
である β′ ∈ Conj(β,K(α)) がとれる． ここで，Conj(β,K(α)) ⊂ Conj(β,K) だから
β′ ∈ Conj(β,K) でもあることに注意する． いま，g(X) を γ の K 上の最小多項式とし，
G(X) = g(α− sX) とおくと，G(X) は K(α) 上の多項式であって

G(β) = g(α− sβ) = g(γ) = 0.

よって，G(X) は β の K(α) 上の最小多項式で割り切れ，したがって G(β′) = 0 が成り
立つ． よって，g(α− sβ′) = 0 より，α− sβ′ ∈ Conj(γ,K)． そこで γ′ = α− sβ′ とお
けば

γ′ = (γ + sβ)− sβ′, ∴ s =
γ − γ′

β′ − β
∈ S

となって s の取り方に矛盾する． □
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定義 8.6 代数拡大 L/K において，すべての α ∈ L が K 上分離的であるとき，
L/K を分離拡大という． また，このとき L は K 上分離的であるともいう．

定理 8.7 (原始元定理) 任意の有限次分離拡大は単純拡大である．すなわち L/K

が有限次分離拡大ならば，L = K(α) をみたす α ∈ L が存在する．

証明 次数 [L : K] に関する数学的帰納法で示す． [L : K] = 1 すなわち L = K のとき
はあきらか． 以下，[L : K] > 1 とし，次数が [L : K] より小さい場合は成り立つと仮定
する（帰納法の仮定）． [L : K] > 1 より，β 6∈ K である β ∈ L が存在する． このとき

[L : K(β)] < [L : K] かつ L/K(β) は分離拡大

だから，帰納法の仮定より L = K(β, γ) をみたす γ ∈ L が存在する． そこで，補題 8.5

を適用すれば，定理の主張を得る． □

定理 8.8 K を標数 0 の体，または有限体とする．
(1) K 上のすべての既約多項式は分離的である．
(2) K 上のすべての代数拡大体は分離的である．
(3) K 上のすべての有限次拡大体は単純である．

証明 定理 8.2 および定理 8.7からすぐに得られる． □

次の補題は，定理 6.11を使って証明される（§15 補遺を参照）．
補題 8.9 体 K 上代数的である α, β が，β ∈ K(α) をみたすならば，

|Conj(α,K)| = |Conj(α,K(β))| |Conj(β,K)|

が成り立つ．

命題 8.10 体 K 上分離的である α に対して，K(α)/K は分離拡大である．

証明 定理 6.14より，任意の β ∈ K(α) に対して
|Conj(α,K(β))| ≤ [K(α) : K(β)], |Conj(β,K)| ≤ [K(β) : K]

が一般に成り立っている． もし，β が K 上分離的でないならば，定理 8.4より後者の等
号は成り立たず，したがって，前補題から

|Conj(α,K)| < [K(α) : K(β)][K(β) : K] = [K(α) : K].

ところが，α は K 上分離的だから，再び定理 8.4より |Conj(α,K)| = [K(α) : K] でなけ
ればならず，矛盾である．よって，すべての β ∈ K(α) は K 上分離的である． □
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定理 8.11 M を代数拡大 L/K の中間体とするとき，次は同値である．
(i) L/K は分離拡大である．
(ii) L/M , M/K はともに分離拡大である．

証明 (i) ならば (ii) は明らかなので，以下では (ii) を仮定して (i)，すなわち，L/K が
分離的であることを示す．
L/K が有限次拡大のとき: L/M，M/K はともに有限次分離拡大だから，原始元定理
(定理 8.7)より，M = K(β), L = M(γ) をみたす β ∈ M, γ ∈ L が存在する． β は K
上分離的だから，定理 8.4より

|Conj(β,K)| = [K(β) : K]

が成り立ち，さらに L = K(β, γ) に補題 8.5が適用できて，L = K(α) となる α ∈ L を
取ることができる． このとき，α は M = K(β) 上分離的だから，再び定理 8.4から

|Conj(α,K(β))| = [K(β, α) : K(β)] = [K(α) : K(β)].

したがって，補題 8.9を用いて
|Conj(α,K)| = [K(α) : K]

が導かれ，定理 8.4と命題 8.10から，L = K(α) が K 上分離的であることが示された．
L/K が無限次拡大のとき: 任意の δ ∈ L が K 上分離的であることを確かめればよい．
δ の M 上の最小多項式の係数をすべて K に添加した M の部分体を M0 とする． この
とき，M0/K が分離的であることはあきらかだが，命題 8.10より M0(δ)/M0 も分離的で
あり，しかも M0(δ)/K は有限次拡大である．よって，上で示したことから M0(δ)/K は
分離的，とくに δ が K 上分離的であることが確かめられた． □

命題 8.12 K を体とし，α, β ∈ K が K 上分離的であるとする． このとき，
K(α, β)/K は分離拡大である． とくに，α± β, αβ, α/β はどれも K 上分離的で
ある．

証明 命題 8.10 より，K(α)/K は分離拡大，さらに，β は K(α) 上も分離的だから，
K(α, β)/K(α) も分離拡大である． よって，前定理より結論を得る． □

定理 8.13 L, E がともに K 上分離的ならば，LE, L∩E はどちらも K 上分離
的である．

証明 LE の元は L∪E の有限個の元から加減乗除によって表されるから，前命題によっ
て K 上分離的であることがわかり，したがって LE/K は分離拡大である． (L ∩E)/K

が分離拡大であることは明らかである． □
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§9. 正規拡大

定理 9.1 代数拡大 L/K について，次は同値である．
(i) すべての σ ∈ Aut(K/K) に対して σ(L) ⊂ L．
(ii) すべての σ ∈ Aut(K/K) に対して σ(L) = L．
(iii) すべての α ∈ L に対して Conj(α,K) = {σ(α) | σ ∈ Aut(L/K) }．
(iv) すべての α ∈ L に対して Conj(α,K) ⊂ L．

証明 (i)⇒(ii): σ ∈ Aut(K/K) ならば，σ−1 ∈ Aut(K/K) でもあるから，σ−1(L) ⊂ L

が (i) より得られ，L = σ(σ−1(L)) ⊂ σ(L)． よって (ii) が導かれた．
(ii)⇒(iii): α ∈ L とし，その K 上の最小多項式を f(X) とする．任意の σ ∈ Aut(L/K)
に対して，f(σ(α)) = σ(f(α)) = σ(0) = 0 より，σ(α) ∈ Conj(α,K)，

∴ {σ(α) | σ ∈ Aut(L/K) } ⊂ Conj(α,K).

逆の包含関係を示すために，β ∈ Conj(α,K) とすると，定理 6.11（または系 6.12）から，
β = τ(α) をみたす τ ∈ Aut(K/K) がとれる． このとき (ii) より τ(L) = L なので，
σ = τ |L とおけば，σ ∈ Aut(L/K) であって，かつ β = τ(α) = σ(α) であるから，逆の
包含関係が示された．
(iii)⇒(iv): α ∈ L ならば {σ(α) | σ ∈ Aut(L/K) } ⊂ L，よって (iii)より (iv)を得る．
(iv)⇒(i): α ∈ L とすると，系 6.12 より，σ ∈ Aut(K/K) のとき σ(α) ∈ Conj(α,K)．
よって (iv) より σ(α) ∈ L となり，(i)が得られた． □

定義 9.2 前定理の条件が成り立つような代数拡大 L/K を正規拡大という． L

は K 上正規であるともいう．

命題 9.3 任意の体 K の任意の 2次拡大体は K 上正規である．

証明 L/K を 2次拡大とする． 定理 9.1の条件 (iv)，すなわち，任意の α ∈ L に対して
Conj(α,K) ⊂ L を確かめればよい． α ∈ K ならばあきらかなので，α 6∈ K とする． こ
のとき，α の K 上の最小多項式は 2次式であり X2 − cX + d (c, d ∈ K) とすれば，解と
係数の関係から Conj(α,K) = {α, c− α} ⊂ L． □

定義 9.4 体 K 上の多項式 f(X) に対して，その K における根すべてを K に
添加して得られる K の部分体を f(X) の K 上の最小分解体という． すなわち，

f(X) = a(X − α1)(X − α2) . . . (X − αn), a ∈ K×, αi ∈ K

とするとき，K(α1, . . . , αn) が f(X) の K 上の最小分解体である．
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例 9.5 α が K 上代数的であるとき，α の K 上の最小多項式の K 上の最小分
解体は K(Conj(α,K)) で与えられる．

定理 9.6 代数拡大 L/K について，次は同値である．
(i) L/K は有限次正規拡大である．
(ii) L は K 上のある多項式の K 上の最小分解体である．

証明 (i)⇒(ii): L/K は有限次拡大だから，K 上代数的な有限個の α1, . . . , αn によって
L = K(α1, . . . , αn) と表される． L/K が正規であるという仮定より Conj(αi,K) ⊂ L が
成り立つ． 一方，fi(X) を αi の K 上の最小多項式とすると，Conj(αi,K) は fi(X) の
根全体の集合と一致する． したがって，

f(X) = f1(X) · · · fn(X)

とおくと，その K 上の最小分解体は

K(Conj(α1,K) ∪ · · · ∪ Conj(αn,K)) ⊂ L

であるが，左辺が K(α1, . . . , αn)＝ L を含むのはあきらかなので (ii) が得られた．
(ii)⇒(i): L が f(X) ∈ K[X] の K 上の最小分解体であるとする． すなわち，f(X) の
根全体の集合を A とすれば，L = K(A) が成り立つ．いま，σ ∈ Aut(K/K) を任意にと
る． α ∈ A ならば，定理 6.11 より σ(α) ∈ Conj(α,K) であり，さらに α の K 上の最小
多項式は f(X) の因子だから，Conj(α,K) ⊂ A，よって σ(A) ⊂ A が成り立つ（実際に
は σ(A) = A がいえる）． したがって，定理 9.1 の (i) より，L は K 上正規である．□

定理 9.7 α が体 K 上代数的であるとき，次は同値である．
(i) K(α)/K は正規拡大である．
(ii) K(α) は α の K 上の最小多項式の K 上の最小分解体である．
(iii) K(α) = K(Conj(α,K)) が成り立つ．
(iv) |Aut(K(α)/K)| = |Conj(α,K)| が成り立つ．

証明 (i)⇒(iv): 定理 6.14 の証明で見たように，単射

Φ : Aut(K(α)/K) −→ Conj(α,K), σ 7→ σ(α)

が定まる． いま，β ∈ Conj(α,K) を任意にとれば，仮定 (i) より β ∈ K(α) だから
K(β) ⊂ K(α)，さらに K 上の次数を考えることにより K(β) = K(α) である．一方，定
理 6.11 より τ(α) = β をみたす τ ∈ Aut(K/K) が存在する． そこで，σ = τ |K(α) とお
けば，

σ(K(α)) = K(σ(α)) = K(β) = K(α),
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よって σ ∈ Aut(K(α)/K) であって，もちろん σ(α) = β． したがって，上記写像 Φ が
全単射であることがわかり，(iv) を得る．
(iv)⇒(iii): 上で定めた Φ は，仮定 (iv) より全単射である． すなわち，β ∈ Conj(α,K)
ならば，σ(α) = β をみたす σ ∈ Aut(K(α)/K) が存在し，とくに β ∈ K(α)．したがって

K(Conj(α,K)) ⊂ K(α).

逆の包含関係はあきらかだから，(iii)が示された．
(iii)⇒(ii): は最小分解体の定義より直ちにわかる．
(ii)⇒(i): も定理 9.6 よりあきらかである． □

例 9.8 K が R の部分体で，K(α)/K が 3次拡大であるとする． f(X) を α の
K 上の最小多項式とするとき，
(a) K(α)/K が正規拡大ならば，f(X) の 3根はすべて実数である．
(b) f(X) の実根がただひとつならば，K(α)/K は正規ではない．

例 9.9 3次既約多項式 g(X) = X3 − 3X + 1 の任意のひとつの根を β とする
と，Q(β)/Q は正規拡大である． 実際，

g

(
1

1− β

)
= − g(β)

(1− β)3
= 0, g

(
1− 1

β

)
= −g(β)

β3
= 0

より，g(X) の他の 2根が 1

1− β
, 1 − 1

β
であることが確かめられるので，Q(β)

は g(X) の Q 上の最小分解体，よって定理 9.7 より正規であることがわかる．

例 9.10 ω を 1の原始 3乗根とし，

K = Q(ω), M = Q
(

3
√
5
)
, L = KM = Q

(
ω,

3
√
5
)

とおく． K = Q
(√

−3
)
, L = Q

(
3
√
5,

√
−3
) とも表せることに注意．

(a) K は，X2 +X + 1 の Q 上の最小分解体であり，Q 上正規である．
(b) L は，X3 − 5 の Q 上の最小分解体であり，Q 上正規である．
(c) M は，Conj( 3

√
5,Q) =

{
3
√
5, ω 3

√
5, ω2 3

√
5,
}
6⊂ M より，Q 上正規ではない．

例 9.11 自然数 n に対して ζn ∈ C× を 1の原始 n 乗根とする（ζn = e2πi/n であ
るとしてよい）． このとき，Q(ζn) は Q 上正規である． 実際，Q(ζn) は Xn − 1

の Q 上の最小分解体である．
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例 9.12 Q 上の拡大体 K が ζn ∈ K をみたすとき，任意の a ∈ K に対して
K( n

√
a)/K は正規拡大である．実際，L を Xn−a の K 上の最小分解体とすると，

L = K
(

n
√
a, ζn

n
√
a, . . . , ζn−1

n
n
√
a
)

であって，L/K は正規拡大である．ここで，ζn ∈ K に注意すれば，任意の j ∈ Z

に対して ζjn
n
√
a ∈ K( n

√
a)，よって L = K( n

√
a) となる．

定理 9.13 L/K を正規拡大とすると，任意の中間体 M に対して L/M は正規
拡大である．

証明 α ∈ L のとき，Conj(α,M) ⊂ Conj(α,K) だから，定理 9.1 (iv) を使えばよい．□

注意 正規拡大 L/K の中間体 M は，一般には K 上正規にはならない． 例
9.10 を参照．

定理 9.14 L, E がともに K 上正規ならば，LE, L∩E はどちらも K 上正規で
ある．

証明 定理 9.1 の条件 (i) を使えばよい． □

定理 9.15 L/K を正規拡大とすると，任意の拡大 F/K に対して LF/F は正規
拡大である．

証明 合成体 LF を扱う場合，L,F を含む体 Ω の存在を仮定していることに注意する
（定義 4.12参照）． さらに Ω は代数的閉体であるとしてよく，また，K,F の代数的閉包
K,F が Ω の部分体として一意的に定まり K ⊂ F が成り立つことが，§6での考察からわ
かる． この状況の下で，σ ∈ Aut(F/F ) に対して，σ|K ∈ Aut(K/K) が成り立つことを
確かめるのは難しくない． よって，L/K が正規であるという仮定より σ(L) ⊂ L となる
ので，σ(LF ) = σ(L)σ(F ) ⊂ LF が得られ，LF/F は正規である． □

定義 9.16 代数拡大 L/K に対して，L を含む K 上の最小の正規拡大体を L/K

の正規閉包という．

命題 9.17 α が K 上代数的であるとき，K(α)/K の正規閉包は K(Conj(α,K))

である．

証明 L を K(α) の正規閉包とする． 例 9.5 と定理 9.6 より，K(Conj(α,K)) は K 上
正規だから，最小の正規拡大である L は K(Conj(α,K)) に含まれる．一方，α ∈ L だか
ら，定理 9.1 の条件 (iv) より，Conj(α,K) ⊂ L，したがって K(Conj(α,K)) ⊂ L． よっ
て L = K(Conj(α,K)) を得る． □
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§10. ガロア拡大

定義 10.1 分離拡大かつ正規拡大である体の拡大をガロア拡大という． L/K が
ガロア拡大のとき，Aut(L/K) をとくに Gal(L/K) と表し，L/K のガロア群，ま
たは L の K 上のガロア群という．

定理 10.2 有限次拡大 L/K に対して，次は同値である．
(i) L/K はガロアである．
(ii) L は K 上のある分離多項式の K 上の最小分解体である．

証明 (i)⇒(ii): 仮定 (i) より，とくに L/K は有限次分離拡大，よって定理 8.7 より，
ある α ∈ L を用いて L = K(α) とかける． α は K 上分離的だからその最小多項式
f(X) ∈ K[X] は分離多項式である． さらに L/K は正規だから Conj(α,K) ⊂ L，した
がって，f(X) の K 上の最小分解体 K(Conj(α,K)) は L に等しい．
(ii)⇒(i): L が K 上の分離多項式 f(X) の K 上の最小分解体であるとする． このとき，
定理 9.6 より L/K は正規拡大である． 一方，f(X) の根すべてを αi (i = 1, . . . , r) とす
れば，L = K(α1, . . . , αr) と表されるが，各 αi は K 上分離的なので，命題 8.12 を繰り
返し適用すれば，L/K が分離的であることが導かれる． □

定理 10.3 L/K が有限次ガロア拡大ならば，|Gal(L/K)| = [L : K] が成り立つ．

証明 L/K は有限次分離拡大なので，原始元定理 (定理 8.7)によって L = K(α) と表さ
れ，さらに定理 8.4 より，|Conj(α,K)| = [K(α) : K] が成り立つ． 一方，L = K(α) は
K 上正規でもあるので，定理 9.7 より |Gal(K(α)/K)| = |Conj(α,K)|，したがって結論
の等式を得る． □

定義 10.4 L を体とし，Ω を L の拡大体とする． L から Ω への単射準同型写
像の集合 H に対して，

LH = {x ∈ L | 任意の σ ∈ H に対して σ(x) = x }

を H の（L における）不変体という（H の元が準同型写像であることを用いれ
ば，不変体 LH は L の部分体であることが確かめられる）．

以下，多くの場合，H は代数拡大 L/K の自己同型群 Aut(L/K) の部分群であ
る． 次の補題は，不変体の定義からすぐに示すことができる．
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補題 10.5 L/K を体の拡大とする．
(1) L/K の任意の中間体 M に対して，M ⊂ LAut(L/M) が成り立つ．
(2) Aut(L/K) の任意の部分群 H に対して，H ⊂ Aut(L/LH) が成り立つ．

定理 10.6 代数拡大 L/K がガロアであるためには，K = LAut(L/K) であること
が必要十分である．

証明 必要性: M = LAut(L/K) とおくと，前補題 (1) から K ⊂ M である． そこで，
L/K がガロア，すなわち分離的かつ正規であることを仮定して，M ⊂ K を導く．そのた
めに α ∈ M を任意にとる． M の定義から，任意の σ ∈ Aut(L/K) に対して σ(α) = α
であるが，L/K は正規なので，定理 9.1 の性質 (iii)を用いれば，Conj(α,K) = {α} が得
られる． さらに，α は K 上分離的だから，定理 8.4 より

[K(α) : K] = |Conj(α,K)| = 1, ∴ K(α) = K

よって α ∈ K となるから，M ⊂ K が導かれた．
十分性: K = LAut(L/K) を仮定し，任意の α ∈ L に対して，

(♠) |Conj(α,K)| = [K(α) : K], Conj(α,K) ⊂ L

を確かめればよい．なぜなら，前者の等式と定理 8.4 から L/K の分離性が，後者の包含
関係と定理 9.1 の性質 (iv) から L/K の正規性が導かれるからである． いま，

Bα = {σ(α) |σ ∈ Aut(L/K) }

とおけば，Bα ⊂ L であり，系 6.12 より
(♥) Bα ⊂

{
σ(α) |σ ∈ Aut(K/K)

}
= Conj(α,K),

よって，
(♦) |Bα| ≤ |Conj(α,K)| ≤ [K(α) : K]

が成り立つ． とくに，Bα は有限集合であり，L 上の多項式
fα(X) =

∏
β∈Bα

(X − β)

を定義することができる． ここで，任意の σ ∈ Aut(L/K) に対して
fσ
α (X) =

∏
β∈Bα

(X − σ(β)) =
∏

γ∈σ(Bα)

(X − γ)

だが，Aut(L/K) が群であることに注意すれば，σ(Bα) = Bα，よって fσ
α (X) = fα(X) で

あることがわかる．すなわち fα(X)の係数は LAut(L/K) = K に属する; fα(X) ∈ K[X]．
さらに fα(α) = 0 であるから，補題 3.5 より

[K(α) : K] ≤ deg fα(X) = |Bα| .

よって，(♥) の包含関係と (♦) の不等号はすべて等号に置き換えられ，
Conj(α,K) = Bα ⊂ L, |Conj(α,K)| = [K(α) : K],

すなわち (♠) が確かめられた． □
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系 10.7 L/K をガロア拡大としそのガロア群を G とする． M を L/K の中間
体とすると，L/M はガロア拡大でそのガロア群 Gal(L/M) は G の部分群であり，
さらに LGal(L/M) = M が成り立つ．

証明 L/K の分離性から L/M が分離的であること（定理 8.11），また，L/K の正規性
から L/M が正規拡大であること（定理 9.13）がわかるから，L/M はガロア拡大である．
後半は前定理から導かれる． □

定理 10.8 L/K を有限次ガロア拡大としそのガロア群を G とする． H を
Gal(L/K) の部分群とすると，LH は L/K の中間体，したがって L/LH はガ
ロア拡大であり，さらに Gal(L/LH) = H が成り立つ．

証明 M = LH とおく． L/M がガロア拡大であることは，系 10.7で示されている．補
題 10.5 (2) より H ⊂ Gal(L/M) であり，このことと定理 10.3 を用いて

|H| ≤ |Gal(L/M)| = |Aut(L/M)| = [L : M ].

一方，原始元定理 (定理 8.7)より L = M(α) をみたす α ∈ L がとれる． そこで，L 上の
多項式

gα(X) =
∏
σ∈H

(X − σ(α))

を考えると，H が群であることから，任意の σ ∈ H に対して gσα(X) = gα(X) であり，
gα(X) の係数は LH = M に属することがわかる; gα(X) ∈ M [X]． さらに gα(α) = 0
なので

[L : M ] ≤ deg gα(X) = |H| .

したがって，上の不等式と合わせて |H| = |Gal(L/M)| であり，よって H = Gal(L/M)

を得る． □

定理 10.9 (ガロア理論の基本定理) 有限次ガロア拡大 L/K に対して，その
ガロア群を G とする．ML/K を L/K の中間体全体の集合，HG を G の部分群
全体の集合とする;

ML/K = {M | M は L/K の中間体 } , HG = {H | H は G の部分群 } .

このとき，二つの写像

ML/K −→ HG, M 7→ Gal(L/M)

HG −→ ML/K , H 7→ LH

は互いに逆の全単射である．
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証明 写像に名前を付けて，Φ : ML/K → HG および Ψ : HG −→ ML/K とする． こ
のとき，任意の M ∈ ML/K，H ∈ HG に対して

Ψ(Φ(M)) = M, Φ(Ψ(H)) = H

を示せばよいが，これらはそれぞれ
LGal(L/M) = M, Gal(L/LH) = H

のことであり，系 10.7，定理 10.8 ですでに示されている． □

定義 10.10 有限次ガロア拡大 L/K に対してそのガロア群を G とする;

G = Gal(L/K).

L/K の中間体 M と G の部分群 H の間に，
H = Gal(L/M)

あるいは，これと同値な
M = LH

の関係があるとき，M と H は互いに対応するという． この対応をガロア対応と
いう．とくに K は G に対応し，L は idL (= L上の恒等写像) だけを元にもつ群
（単位群）に対応する． 今後，単位群を簡単に {1} と略記することにする．

sK

sM

sL

←→

sG
sH
s {1}

定義 10.11 L/K をガロア拡大，そのガロア群を G とする．
(1) G が巡回群のとき，L/K を巡回拡大という．
(2) G がアーベル群のとき，L/K をアーベル拡大という．
(3) G が可解群のとき，L/K を可解拡大という．

例 10.12 (1) 素数次ガロア拡大は巡回拡大である． なぜなら，素数位数の有
限群は巡回群だから．
(2) 次数 5 以下のガロア拡大はアーベル拡大である． なぜなら，位数が 5 以

下の有限群はすべてアーベル群だから．
(3) 次数 60 未満のガロア拡大は可解拡大である． なぜなら，位数が 60 未満
の有限群はすべて可解群だから．
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§11. ガロア対応

定理 11.1 L/K を有限次ガロア拡大とし，そのガロア群を G とする． いま，
L/K の中間体 M1, M2 がそれぞれ G の部分群 H1, H2 に対応しているとする．
(1) M1 ⊂ M2 と H1 ⊃ H2 は同値である．
(2) 合成体 M1M2 に対応する部分群は H1 ∩H2 である．
(3) M1 ∩M2 に対応する部分群は H1 ∪H2 で生成される G の部分群である．

sK
sM1 ∩M2

@
@








s s

M1

M2










@
@
sM1M2

sL

←→

sG
s〈H1 ∪H2〉@

@







s s

H1

H2










@
@
sH1 ∩H2

s{1}

証明 (1) まず M1 ⊂ M2 を仮定する． σ ∈ H2 = Gal(L/M2) を任意にとると，

σ(x) = x (∀x ∈ M2) より σ(x) = x (∀x ∈ M1), ∴ σ ∈ Gal(L/M1) = H1

よって H2 ⊂ H1 を得る． 逆に H2 ⊂ H1 を仮定する． x ∈ M1 = LH1 を任意にとると，

σ(x) = x (∀σ ∈ H1) より σ(x) = x (∀σ ∈ H2), ∴ x ∈ LH2 = M2

よって M1 ⊂ M2 を得る．
(2) M1M2 は M1, M2 を含む最小の体だから，(1)より，対応する部分群は H1, H2 に含
まれる最大の部分群 H1 ∩H2 である．
(3) M1∩M2 は M1, M2 に含まれる最大の体だから，(1)より，対応する部分群は H1, H2

を含む最小の群であり，それは H1 ∪H2 で生成される G の部分群である． □

定理 11.2 L/K を有限次ガロア拡大とし，そのガロア群を G とする． M を
L/K の中間体，H を M に対応する G の部分群とする． また，σ ∈ G とする．
このとき，σ(M) は L/K の中間体であり，対応する G の部分群は σHσ−1 である．
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sKJ
J

J
J










s sM σ(M)








J
J

J
J
sL

←→

sGJ
J

J
J










s sH σHσ−1








J
J

J
J
s{1}

証明 L/K は正規なので σ(L) = L，よって K ⊂ σ(M) ⊂ L となるから σ(M) は L/K
の中間体である． また，M = LH より，α ∈ L に対して

α ∈ M ⇐⇒ τ(α) = α (∀ τ ∈ H).

したがって，
β ∈ σ(M) ⇐⇒ σ−1(β) ∈ M ⇐⇒ τ(σ−1(β)) = σ−1(β) (∀ τ ∈ H)

⇐⇒ (στσ−1)(β) = β (∀ τ ∈ H) ⇐⇒ ρ(β) = β (∀ρ ∈ σHσ−1)

よって，中間体 σ(M) は部分群 σHσ−1 に対応する． □

定理 11.3 L/K を有限次ガロア拡大とし，そのガロア群を G とする． M を
L/K の中間体，H を M に対応する G の部分群とする． このとき，M/K がガ
ロア拡大であるためには，H が G の正規部分群であることが必要十分である．ま
たこのとき M/K のガロア群は G/H と同型である． 詳しくは，制限写像

G = Gal(L/K) −→ Gal(M/K), σ 7→ σ|M

から自然に同型

G/H = Gal(L/K)/Gal(L/M) ∼= Gal(M/K)

が引き起こされる．

sK

sM

sL

←→

sG
sH
s{1}

←→ sG/H

s{1}

証明 L/K がガロア拡大なので，とくに M/K は分離的である．したがって，M/K が
ガロアであるためには，正規であること，すなわち，任意の σ ∈ G に対して σ(M) = M
が成り立つことが必要十分である． 前定理を用いれば，

σ(M) = M ⇐⇒ σHσ−1 = H

であるが，右の等式が任意の σ ∈ G に対して成り立つことは，H が G の正規部分群で
あることを示している． 後半は，準同型定理から導かれる． □
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系 11.4 L/K を有限次ガロア拡大，M をその中間体とする．
(1) L/K がアーベル拡大ならば，L/M, M/K はともにアーベル拡大である．
(2) L/K が巡回拡大ならば，L/M, M/K はともに巡回拡大である．
(3) L/K が可解拡大ならば，L/M も可解拡大である． さらに M/K がガロア
拡大（すなわち Gal(L/M) が Gal(L/K) の正規部分群）ならば，M/K も
可解拡大である．

証明 H を群 G の部分群とする． G がアーベル群ならば，H はアーベル群かつ G の
正規部分群であって，剰余群 G/H もアーベル群である． このことと前定理から (1) が
得られる． また，アーベル群を巡回群としても同様のことがいえるから (2) も成り立つ．
(3) は，G が可解群のとき H も可解群であり，さらに H が G の正規部分群ならば剰余
群 G/H も可解群になることから導かれる． □

定理 11.5 体の拡大 Ω/K の中間体 M1, M2 がともに K 上の有限次ガロア拡大
体であるとする．
(1) M1M2 および M1 ∩M2 はともに K 上ガロアである．
(2) Gal(M1M2/K) は直積 Gal(M1/K)×Gal(M2/K) の部分群に同型である．
(3) M1 ∩M2 = K ならば，自然な同型

Gal(M1M2/K) ∼= Gal(M1/K)×Gal(M2/K)

が存在する．

証明 (1) は，定理 8.13 から分離性が，定理 9.14 から正規性が導かれることからわかる．
(2)と (3)を示すために，準同型写像

Γ : Gal(M1M2/K) −→ Gal(M1/K)×Gal(M2/K), σ 7→ (σ|M1 , σ|M2)

を考える． いま，σ ∈ KerΓ ならば，σ|M1 = idM1，σ|M2 = idM2 だから，σ|M1M2 =
idM1M2，したがって KerΓ = {idM1M2} = {1}，すなわち Γ は単射であり (2) が得られ
た．次に，G = Gal(M1M2/K) とおき，M1, M2 に対応する G の部分群を H1, H2 とす
る． M1, M2 は K 上ガロアだから，定理 11.3 より，H1, H2 は G の正規部分群で，自
然な同型

Gal(M1/K) ∼= G/H1, Gal(M2/K) ∼= G/H2

が得られる． したがって，上で定義した単射準同型写像 Γ は

Γ : G −→ G/H1 ×G/H2

と書き換えることができる． ここで，H1, H2 の正規性から，H1 ∪H2 で生成される群は

H1H2 = {h1h2 |h1 ∈ H1, h2 ∈ H2 }
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と一致する．一方，定理 11.1 (2) より，H1 ∩H2 は M1M2 に対応するから単位群である;

H1 ∩H2 = {1}． よって，H1H2 は直積群 H1 ×H2 と同型であり，さらに M1 ∩M2 に
対応していることが定理 11.1 (3) からわかる． そこで，とくに M1 ∩M2 = K の場合を
考えると，G = H1H2

∼= H1 ×H2 であって，G の位数と G/H1 ×G/H2 の位数は等しく
なる． したがって，Γ は同型写像であり (3) が確かめられた． □

定理 11.6 L/K が有限次ガロア拡大ならば，K 上の任意の拡大体 F に対して，
LF/F はガロア拡大であり，そのガロア群は Gal(L/(L ∩ F )) と同型である． と
くに Gal(LF/F ) は Gal(L/K) の部分群と同型である．

sK

sL ∩ F �
�
�

s
s

L

F

�
�
�
sLF

証明 L/K は分離拡大なので，L の任意の元は K 上分離的だから，F 上でも分離的，
したがって命題 8.10 等を用いれば，LF/F は分離拡大である． 一方，定理 9.15 より
LF は F 上正規でもあるから，LF/F はガロア拡大である． 定理の後半を示すために，
M = L ∩ F とおき，準備として

[L : M ] = [LF : F ]

が成り立つことを確かめよう． L/K は有限次分離拡大だから，原始元定理（定理 8.7）よ
り，L = K(α) となるような α ∈ L がとれる． f(X) を α の K 上の最小多項式，g(X)
を α の F 上の最小多項式とする． f(X) ∈ F [X] と考えれば，f(X) は g(X) で割り切
れることがわかるから，B ⊂ Conj(α,K) が存在して，

g(X) =
∏
β∈B

(X − β)

と書くことができる． ここで，L/K は正規であるから B ⊂ Conj(α,K) ⊂ L，したがっ
て，g(X) の係数は L ∩ F = M に属する． さらに，g(X) は F 上既約だから M 上で
も既約，よって α の M 上の最小多項式となるから，L = M(α)，LF = F (α) に注意す
れば，

[L : M ] = [M(α) : M ] = deg g = [F (α) : F ] = [LF : F ]

が得られた． さて，準同型写像
∆ : Gal(LF/F ) −→ Gal(L/M), σ 7→ σ|L

を考える（M ⊂ F なので定義可能）．いま，σ ∈ Ker∆とすると σ|L = idL だが，もともと
σ は F 上の写像なので σ|F = idF，したがって σ = idLF であり，Ker∆ = {idLF } = {1}，
よって ∆ は単射である． さらに，定理 10.3 と上で示した [LF : F ] = [L : M ] から，
Gal(LF/F ) と Gal(L/M) の位数は等しいので，∆ は同型写像であることが導かれる．□
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§12. ガロア対応の例

例 12.1（Q 上の 2次拡大） Q 上の 2次拡大体 L は Q 上ガロアであり，α 6∈ Q

をみたす任意の α ∈ L をとれば，L = Q(α) である． α の Q 上の最小多項式を

f(X) = X2 + bX + c (b, c ∈ Q)

とすると，α は
−b+

√
b2 − 4c

2
,

−b−
√
b2 − 4c

2

のどちらかであり，どちらであっても L = Q
(√

b2 − 4c
) である． 有理数 b2 − 4c

の分母を s とすれば，s2(b2 − 4c) ∈ Z かつ L = Q
(√

s2(b2 − 4c)
)
でもあるから，

L = Q
(√

m
)

(m ∈ Z)

と表すことができる． ここで，もし m が平方数 l2 で割れて m = l2m′ ならば
L = Q

(√
m′
) とできる． そこで，はじめから m は平方因子をもたない，つまり

m = −1 または ± p1p2 . . . pr (pi は相異なる素数)

の形をした整数であるとしてよい (このような整数は square-free な整数と呼ばれる)．
さて，√

m の Q 上の共役元は，√
m, −

√
m なので，定理 6.11 より，2つの同

型写像，すなわち Gal(L/Q) の元で
√
m 7→

√
m,

√
m 7→ −

√
m

をみたすものがそれぞれ存在する． 前者は恒等写像 idL である． 後者を σ とす
ると，σ(

√
m) = −

√
m，より詳しく

σ : L −→ L, a+ b
√
m 7→ a− b

√
m (a, b ∈ Q)

となっている． ここで，

σ2(a+ b
√
m) = σ(a− b

√
m) = a− b(−

√
m) = a+ b

√
m

より σ2 = idL が成り立っている． 以上をまとめて，2次拡大 L/Q のガロア群と
して位数 2 の巡回群

Gal(L/Q) = 〈σ〉 = {1, σ}

が得られたことになる（ただし，idL = 1 と略記した）．
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例 12.2（Q 上の巡回拡大でない 4次アーベル拡大） Q 上の拡大体

L = Q
(√

2,
√
3
)

を考える． α =
√
2+

√
3 とおけば L = Q(α) と書ける（例 2.4参照）．√

2,
√
3 の

Q 上の共役元は，それぞれ ±
√
2, ±

√
3 だから，α の Q 上の共役元は ±

√
2±

√
3

(復号任意) のどれかである． 一方，

|Conj(α,Q)| = [L : Q] =
[
Q
(√

2,
√
3
)
: Q
]
= 4

より
Conj(α,Q) =

{√
2 +

√
3, −

√
2 +

√
3,

√
2−

√
3, −

√
2−

√
3
}

でなければならない． よって，

Conj(α,Q) ⊂ Q
(√

2,
√
3
)
= Q(α) = L

がいえて，L/Q は正規拡大であることがわかる． したがって L/Q はガロア拡
大である（多項式 (X2 − 2)(X2 − 3) の Q 上の最小分解体であることからもわか
る）． G をガロア群とする; G = Gal(L/Q)． L/Q の中間体

M2 = Q
(√

2
)
, M3 = Q

(√
3
)

に対応する G の部分群を H2, H3 とする． すなわち

H2 = Gal(L/M2), H3 = Gal(L/M3),

または，これらと同値だが

M2 = LH2 , M3 = LH3

が成り立っている．

[L : M2] =
[L : Q]

[M2 : Q]
=

4

2
= 2, [L : M3] =

[L : Q]

[M3 : Q]
=

4

2
= 2

より，H2, H3 はどちらも位数 2の群，したがって巡回群である．そこで，それら
の生成元をそれぞれ τ, σ ∈ G とする;

H2 = 〈τ〉, H3 = 〈σ〉.

このとき √
2 ∈ M2 = LH2 より τ(

√
2) =

√
2 が成り立つが，もし τ(

√
3) =

√
3 で

もあるとすると，L 全体が H2 で不変になるから，M2 = LH2 = L となって矛盾
する．よって τ(

√
3) = −

√
3 でなければならない． H3 についても同様に考えて，

σ(
√
2) = −

√
2, σ(

√
3) =

√
3,

τ(
√
2) =

√
2, τ(

√
3) = −

√
3,
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したがって
σ(α) = −

√
2 +

√
3, τ(α) =

√
2−

√
3

を得る． ここで，σ 6= τ はあきらかだが，
στ(α) = σ(τ(α)) = σ(

√
2−

√
3) = −

√
2−

√
3,

τσ(α) = τ(σ(α)) = τ(−
√
2 +

√
3) = −

√
2−

√
3

より，στ = τσ が成り立つ．したがって G はアーベル群である．また，στ は σ

とも τ とも異なる G の元である． G の位数が体次数 [L : Q] = 4 と一致するこ
とに注意すれば，

G = { 1, σ, τ, στ } = 〈σ, τ〉

と表され，位数 4 のアーベル群であることがわかる． さらに G は位数 4の元を
もたないから巡回群ではない． 実際，G は位数 2の巡回群の直積 Z/2Z ×Z/2Z

と同型である． （加法群 Z/2Z は位数 2の巡回群（生成元は 1̄ = 1 + 2Z）であ
り，同型写像

φ : G −→ Z/2Z ×Z/2Z

が
φ(σ) = (1̄, 0̄), φ(τ) = (0̄, 1̄)

によって与えられる．）

例 12.3（Q 上の 6次非アーベル拡大） α を X3 − 5 の実数根とし，ω を 1の
原始 3乗根とする（ω = e

2πi
3 と思ってよい）． アイゼンシュタインの定理より，

X3 − 5 は Q 上既約，したがって α の Q 上の最小多項式である． さらに
X3 − 5 = (X − α)(X − αω)(X − αω2)

より Conj(α,Q) = {α, αω, αω2} であって，X3 − 5 の Q 上の最小分解体 L は
L = Q

(
α, αω, αω2

)
= Q(α, ω)

で与えられる．L/Q のガロア群を G = Gal(L/Q) とおく． いま，2つの中間体
K = Q(α), F = Q(ω)

について
[K : Q] = 3, [F : Q] =

[
Q
(√

−3
)
: Q
]
= 2

に注意する（後者は ω が X2 + X + 1 の根，すなわち (−1 ±
√
−3)/2 であるこ

とからわかる）． このことから，[L : Q] = 6，したがって G の位数は 6 である．
K,F に対応する G の部分群をそれぞれ H,N とする;

K = LH , H = Gal(L/K),

F = LN , N = Gal(L/F ).
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このとき，

|H| = [L : K] =
[L : Q]

[K : Q]
=

6

3
= 2, |N | = [L : F ] =

[L : Q]

[F : Q]
=

6

2
= 3,

したがって，H は位数 2 の巡回群，N は位数 3 の巡回群である． それぞれの生
成元を τ, σ とする;

H = 〈τ〉 = {1, τ} , N = 〈σ〉 =
{
1, σ, σ2

}
.

ここで，τ(ω) = ω̄ = ω2 である． 実際，そうでないとすると τ(ω) = ω だが，
α ∈ K より τ(α) = α でもあるから，L = Q(α, ω) が H の不変体となって矛盾す
る． 一方，σ(α) = α とすると，今度は L が N の不変体となって矛盾するから，
σ(α) = αω または αω2 である． 後者の場合，

σ2(α) = σ(αω2) = σ(α)σ(ω)2 = αω2ω2 = αω4 = αω

であって，かつ N = 〈σ2〉 でもあるから，σ2 をあらためて σ とおくことによって

σ(α) = αω, σ(ω) = ω,

τ(α) = α, τ(ω) = ω2

であるとしてよい． このとき，
τσ(α) = τ(αω) = αω2, σ2τ(α) = σ2(α) = αω2,

τσ(ω) = τ(ω) = ω2, σ2τ(ω) = σ2(ω2) = ω2

より τσ = σ2τ が示される． 次に，定理 11.2 より，
σ(K) = Q(σ(α)) = Q(αω) に対応する部分群は σHσ−1 =

〈
στσ−1

〉
,

σ2(K) = Q
(
σ2(α)

)
= Q

(
αω2

) に対応する部分群は σ2Hσ−2 =
〈
σ2τσ−2

〉
.

さらに，τ 2 = σ3 = 1 と τσ = σ2τ を使えば，

στσ−1 = σ2τ, σ2τσ−2 = στ

および
G = 〈σ, τ〉 =

{
1, σ, σ2, τ, στ, σ2τ

}
が成り立つことがわかる． したがって，G は 3次対称群 S3 と同型な非アーベ
ル群である． (G : N) = 2 より N は G の正規部分群であり，F は Q 上のガ
ロア拡大体である． これは [F : Q] = 2 からもわかる（命題 9.3参照）． 一方，
Conj(α,Q) 6⊂ K = Q(α) より，K は Q 上ガロアではなく，したがって，H は G

の正規でない部分群である． このことは，στσ−1 = σ2τ 6∈ H からも直接確かめ
られる．
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§13. クンマー拡大

以下において扱う体はすべて C の部分体とする． また，自然数 n に対して，
ζn ∈ C を 1の原始 n乗根とする． すなわち，ζn ∈ C× であって，その位数が n

であるとする（ζn = e2πi/n であるとしてよい）．

定理 13.1 n を自然数とし，K が 1の原始 n乗根 ζn を含むとする． a ∈ K× に
対して，αn = a をみたす α を任意にひとつとり L = K(α) とおく．
(1) L は Xn − a の K 上の最小分解体である．
(2) Xn − a が K 上既約（すなわち α の K 上の最小多項式）ならば，L/K

は n次巡回拡大であり，σ(α) = ζnα をみたす K 上の自己同型 σ によって
Gal(L/K) が生成される;

Gal(L/K) = 〈σ〉 = {1, σ, σ2, . . . , σn−1}.

(3) αl ∈ K である最小の自然数 l が存在し，この l に対して X l − αl は K 上
既約である．この場合，l は n の約数であり，L/K は l 次巡回拡大である．

証明 ζ = ζn と略記する．
(1) Xn − a のすべての根は α, ζα, ζ2α, . . . ζn−1α であるが，ζ ∈ K より最小分解体は
K(α) = L と一致する（例 9.12 参照）．
(2) L/K がガロア拡大であることは (1)よりわかる． G = Gal(L/K) とおく． Xn − a
は α の K 上の最小多項式なので，|G| = [L : K] = n である． さらに，ζα は α と共役
なので，定理 6.11より，σ(α) = ζα をみたす σ ∈ G が存在する． このとき，

σ2(α) = σ(ζα) = ζσ(α) = ζ · ζα = ζ2α,

同様にして，σj(α) = ζjα が任意の j ∈ Z について成り立ち，とくに σn(α) = ζnα = α
より σn = idL(= 1) となる． よって |G| = n に注意すれば，

G = {1, σ, σ2, . . . , σn−1} = 〈σ〉

を得る． とくに L/K は n 次巡回拡大である．
(3) 最小の l が存在することはあきらかであり，さらに l が n の約数であることを示す
のも難しくない． いま，ξ = ζn/l とおけば，ξ は 1の原始 l乗根であり，X l − αl のすべ
ての根は ξiα (i = 0, . . . , l − 1) である． よって，もしX l − αl が K 上可約ならば，そ
の既約因子 g(X) ∈ K[X] は，1 ≤ d < l と 0 ≤ i1 < · · · < id ≤ l − 1 を用いて

g(X) = (X − ξi1α) · · · (X − ξidα)

と表され，とくに，その定数項は g(0) = ±ξi1+···+idαd ∈ K となる．一方，ξ = ζn/l ∈ K

だから αd ∈ K でなければならないが，これは l の最小性に矛盾する． L/K が l 次巡回
拡大であることは (2)を援用すればわかる． □
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定義 13.2 前定理のようにして与えられる体の拡大 L/K を自然数 n に関する
巡回クンマー拡大という． n に関する巡回クンマー拡大の合成を，n に関するクン
マー拡大という． とくに，有限次拡大 L/K が n に関するクンマー拡大であると
は，K が 1の原始 n乗根 ζn を含み，有限個の a1, . . . , ar ∈ K× について αn

j = aj
をみたす αj によって L = K(α1, . . . , αr) と表されることである． n に関する有
限次クンマー拡大は，しばしば L = K

(
n
√
a1, . . . , n

√
ar
) とも表される．

補題 13.3 (デデキント) Γ を乗法群とし，σ1, . . . , σn を Γ から C× への相
異なる準同型写像とする． このとき，(c1, . . . , cn) 6= (0, . . . , 0) をみたす任意の
c1, . . . , cn ∈ C に対して

n∑
i=1

ciσi(γ) = c1σ1(γ) + · · ·+ cnσn(γ) 6= 0

をみたす γ ∈ Γ が存在する．

証明 対偶，すなわち，c1, . . . , cn ∈ C とするとき，

∀γ ∈ Γ に対して
n∑

i=1

ciσi(γ) = 0 =⇒ c1 = · · · = cn = 0

を n に関する数学的帰納法によって示す． n = 1 のときはあきらかである． そこで，
n > 1 として，n− 1 のときは成り立つと仮定し，任意の γ ∈ Γ について

(♠) c1σ1(γ) + c2σ2(γ) + · · ·+ cnσn(γ) = 0

とする． いま，σ1 6= σn だから，σ1(β) 6= σn(β) であるような β ∈ Γ がとれる． 等式
(♠) の γ の代わりに βγ を用いれば，

c1σ1(β)σ1(γ) + c2σ2(β)σ2(γ) + · · ·+ cnσn(β)σn(γ) = 0.

これと，(♠) に σn(β) をかけたもの

c1σn(β)σ1(γ) + c2σn(β)σ2(γ) + · · ·+ cnσn(β)σn(γ) = 0

の差を取れば，最後の項 cnσn(β)σn(γ) が消去されて，

c1(σ1(β)− σn(β))σ1(γ) + · · ·+ cn(σn−1(β)− σn(β))σn−1(γ) = 0

が任意の γ ∈ Γ について成り立つ． よって，帰納法の仮定と β の取り方から c1 = 0 を
得る． したがって (♠) は

c2σ2(γ) + · · ·+ cnσn(γ) = 0

と書き換えられ，再び帰納法の仮定より c2 = · · · = cn = 0 を得る． □
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定理 13.4 n を自然数とし，体 K は 1の原始 n乗根 ζn を含むとする． もし
L/K が n 次巡回拡大ならば，ある a ∈ K× が存在して，L = K( n

√
a) と表され

る． すなわち，K 上の n次巡回拡大は巡回クンマー拡大である．

証明 ζ = ζn と略記する． σ を Gal(L/K) の生成元とする;

Gal(L/K) = 〈σ〉 =
{
1, σ, σ2, . . . , σn−1

}
, σn = 1.

いま，Γ = L×, σi = σi−1 および ci = ζ−(i−1) (i = 1, . . . , n) として前補題を適用すれば，
n−1∑
i=0

ζ−iσi(γ) = γ + ζ−1σ(γ) + · · ·+ ζ−(n−1)σn−1(γ) 6= 0

をみたす γ ∈ L× が存在する． この和を α とすると，0 6= α ∈ L であって

σ(α) =

n−1∑
i=0

ζ−iσi+1(γ) = ζ

n−1∑
i=0

ζ−(i+1)σi+1(γ) = ζα

が成り立ち，両辺を n 乗して σ(αn) = αn を得る． σ は Gal(L/K) の生成元だから，αn

は Gal(L/K) の不変体 K に属する． すなわち αn ∈ K である． ここで，系 6.12より{
σj(α) | j = 0, 1, 2, . . . , n− 1

}
⊂ Conj(α,K)

だが，左辺は {
α, ζα, ζ2α, . . . , ζn−1α

} に等しく，α 6= 0 より n 個の元からなるので，
n ≤ |Conj(α,K)| ≤ [K(α) : K] ≤ [L : K] = n,

よって，不等号はすべて等号であり，とくに L = K(α) が得られる． □

定理 13.5 n を自然数とし，体 K は 1の原始 n乗根 ζn を含むとする． このと
き，L/K が n に関する有限次クンマー拡大であるためには，L/K が有限次アー
ベル拡大でガロア群のすべての元の位数が n の約数であることが必要十分である．

証明は，定理 13.1 と定理 13.4 を組み合わせればよい． 後で引用されないので，
ここでは証明を省略する．

定義 13.6 L/K を体の拡大とする．
(1) Xn − a (a ∈ K×) の形の K 上の既約多項式の根 α によって L = K(α) と
表すことができるとき，L/K を 2項拡大という．

(2) 体の有限列 K0, K1, · · · , Km で，

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 は 2項拡大 (i = 1, 2, · · · ,m)

をみたすものが存在するとき，L/K をベキ根拡大という．
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定義 13.7 L/K を代数拡大とする． 中間体の有限列 K0, K1, · · · , Km で，
K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 はアーベル拡大 (i = 1, 2, · · · ,m)

をみたすものがとれるとき，L/K を塁アーベル拡大という．

注意 定理 13.1において，Xn − a が K 上既約ならば L/K は 2項拡大かつ巡
回拡大であるが，たとえ既約でなくても，(3) より，やはり 2項拡大かつ巡回拡大
になる． したがって，一般に有限次クンマー拡大はベキ根拡大でありかつアーベ
ル（したがって塁アーベル）拡大である．

補題 13.8 n を 1より大きい自然数とする． 体 K に対して K(ζn)/K は n よ
り低い次数のアーベル拡大である．
証明 ζ = ζn と略す． 任意の σ ∈ Aut(K/K) に対して σ(ζ) も 1の原始 n乗根だから，
とくに σ(ζ) ∈ K(ζ)，よって K(ζ)/K はガロア拡大である． そのガロア群を G とおく．
σ ∈ G に対して，σ(ζ) = ζj をみたす整数 j が n を法として一意的に定まる． また，上
述のように ζj は 1の原始 n乗根だから，j, n は互いに素である． よって，写像

G −→ (Z/nZ)×, σ 7→ j

が定義できることがわかる． この写像が単射準同型であることを確かめるのは難しくな
い． よって，G は (Z/nZ)× の部分群に同型，とくにアーベル群であり，

[K(ζ) : K] = |G| ≤
∣∣(Z/nZ)×

∣∣ = φ(n) < n.

ここで，φ はオイラー関数である． □

定理 13.9 ベキ根拡大 L/K に対して，有限次塁アーベル拡大 L′/K で L ⊂ L′

をみたすものが存在する．
証明 L/K の中間体の列

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 は 2項拡大 (i = 1, 2, · · · ,m)

が存在する． ここで，Ki−1 上の既約多項式 Xni − ai の根 αi によって Ki = Ki−1(αi)

と表すことができる． そこで，n を n1, . . . , nm の公倍数とし，ζ を 1の原始 n乗根と
して，Mi = Ki(ζ) (i = 0, 1, . . . ,m) とおく． i = 1, . . . ,m に対して，Mi−1 は 1の原
始 ni乗根をもっているから，Mi = Mi−1(αi) は Mi−1 上の巡回クンマー拡大，したがっ
て巡回拡大である． 一方，補題 13.8より，M0 = K(ζ) は K 上のアーベル拡大なので，
Mm = L(ζ) は K 上有限次塁アーベル拡大である． □

上の定理において，べき根拡大と有限次塁アーベル拡大の役割を入れ替えても
正しいことが次節で示される（定理 14.2）． すなわち，これらの拡大は “本質的”

に同等であると考えることができる．
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§14. 可解性

この節でも，前節同様，扱う体はすべて C の部分体とする．

補題 14.1 有限次アーベル拡大 L/K に対して，中間体の列 K1, · · · , Kr で，
K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr−1 ⊂ Kr = L

Ki/Ki−1 は巡回拡大 (i = 1, 2, · · · , r)

をみたすものが存在する．

証明 L/K の次数に関する数学的帰納法によって示す． [L : K] = 1 すなわち L = K

のときは自明だから，[L : K] > 1 として G = Gal(L/K) とおく． 1 6= σ ∈ G をひとつ
とって H = 〈σ〉 とし，対応する L/K の中間体を M とすると，Gal(L/M) = H は巡回
群だから L/M は巡回拡大である．一方，系 11.4 (2) より M/K はアーベル拡大である．
しかも，H 6= {1} より [M : K] < [L : K] だから，帰納法の仮定より各拡大が巡回拡大で
ある中間体の列 K = K0 ⊂ K1 ⊂ · · · ⊂ Ks = M がとれる． これと M ⊂ L を合わせれ
ば証明が完了する． □

定理 14.2 有限次塁アーベル拡大 L/K に対して，ベキ根拡大 L′/K で L ⊂ L′

をみたすものが存在する．

証明 L/K の次数に関する数学的帰納法による． [L : K] = 1 のときはあきらかだから，
n = [L : K] > 1 とする． いま，L/K は塁アーベル拡大だから，前補題を何度か適用す
ることにより，中間体の列 K1, · · · ,Kr で，

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr−1 ⊂ Kr = L

Ki/Ki−1 は巡回拡大 (i = 1, 2, · · · , r)

をみたすものが存在する． 各 i = 1, 2, . . . , r について ni = [Ki : Ki−1] とすると，それ
らの最小公倍数 m は n の約数である． ζ を 1の原始m乗根とすれば，補題 13.8より，
K(ζ)/K はアーベル拡大で次数は m 未満，したがって n 未満である． よって，帰納法
の仮定が適用でき，ベキ根拡大 M/K で K(ζ) ⊂ M をみたすものがとれる．Mi = KiM

とおけば，Mi = KiMi−1 だから，定理 11.6 より Mi/Mi−1 はガロア拡大でそのガロア群
Gal(Mi/Mi−1) は Gal(Ki/Ki−1) の部分群と同型である． よって Mi/Mi−1 は巡回拡大
でその次数 mi は ni の約数であり m の約数でもある．したがって Mi−1 は 1の原始mi

乗根を含み，定理 13.4 が適用できて，Mi/Mi−1 は巡回クンマー拡大，よって 2項拡大と
なる． このことから Mr/M0 すなわち LM/M はベキ根拡大であることがわかり，M/K

がベキ根拡大であることと合わせて定理が証明された． □
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定義 14.3 α を K 上代数的な元とする． α ∈ L をみたすベキ根拡大 L/K が
存在するとき，α は K 上ベキ根によって表されるという．

定義 14.4 f(X) ∈ K[X] とする． f(X) の任意の根が K 上ベキ根によって表
されるとき，f(X) は K 上ベキ根によって解ける，または K 上ベキ根によって
可解であるという．

例 14.5 体 K 上のすべての 2次多項式は K 上ベキ根によって解ける．なぜな
ら，すべての 2次式 f(X) = X2 + bX + c は

f(X) =

(
X +

b

2

)2

−
(
b2

4
− c

)
と変形できるからである．

例 14.6 体 K に対して，1のベキ根は K 上ベキ根によって表される． この事
実は当たり前のように思えるが，n > 1 のとき 2項式 Xn − 1 は K 上既約ではな
いので，定義から直接には導けない．証明は，補題 13.8および定理 14.2を用いて
与えられる (定理 14.7)． なお，n = 3, 5 の場合は以下を参照せよ．
(1) 1の原始 3乗根 ω = e

2π
√
−1

3 について，L = Q(ω) とおく． ω3 = 1 かつ
ω 6= 1 より ω2 + ω + 1 = 0 だから，

ω =
−1±

√
−3

2
,

よって，L = Q
(√

−3
) であって L/Q は 2項拡大，したがって，ω は Q 上ベキ

根によって表される．
(2) ζ を 1の原始 5乗根とすると，ζ4+ ζ3+ ζ2+ ζ+1 = 0．これを ζ2 で割って

ζ2 + ζ + 1 +
1

ζ
+

1

ζ2
= 0.

そこで，η = ζ +
1

ζ
とおけば，η2 = ζ2 +

1

ζ2
+ 2 だから

η2 + η − 1 = 0, ∴ η =
−1±

√
5

2
.

一方，ζ2 − ηζ + 1 = 0 より

ζ =
η ±

√
η2 − 4

2

であるから，2項拡大の列
Q ⊂ Q

(√
5
)
⊂ Q

(√
5,
√

η2 − 4
)

が得られ，ζ ∈ Q
(√

5,
√

η2 − 4
)
． このことから，ζ は Q 上ベキ根によって表さ

れることがわかる．
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定理 14.7 (ガウス) n を自然数とし，ζ を 1の原始 n乗根とすると，任意の体
K に対して ζ は K 上ベキ根で表される．

証明 補題 13.8 から K(ζ)/K はアーベル拡大であり，定理 14.2より，ベキ根拡大 L/K

で K(ζ) ⊂ L をみたすものがとれる． とくに ζ は K 上ベキ根で表される． □

いま，L/K を有限次ガロア拡大としそのガロア群を G とする． さらに L/K

が塁アーベル拡大でもあるとすると，中間体の列

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 はアーベル拡大 (i = 1, 2, · · · ,m)

に G の部分群の列

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm−1 ⊃ Gm = {1}
Gi は Gi−1 の正規部分群で Gi−1/Gi はアーベル群 (i = 1, 2, · · · ,m)

が対応する． 群論で学んだように，このような部分群列が存在する群は可解群と
よばれる． すなわち，塁アーベルであるガロア拡大とは可解拡大のことに他なら
ない． よって，定理 14.2 から次の定理を得る．

定理 14.8 有限次可解拡大 L/K に対して，ベキ根拡大 L′/K で L ⊂ L′ をみた
すものが存在する．

一方で，与えられた有限次塁アーベル拡大 L/K に対して，原始元定理により
L = K(α) と表したとき，L/K の正規閉包（いまの場合，L を含む K 上の最小
のガロア拡大体）L′ は，命題 9.17より

L′ = K(Conj(α,K)) =
∏

β∈Conj(α,K)

K(β)

で与えられる． K 上の有限個の塁アーベル拡大体の合成体が塁アーベル拡大体と
なることは，定理 11.5 (2)を使って（厳密には数学的帰納法により）示すことがで
きるので，L′/K は可解拡大であることわかる． したがって，定理 13.9から次の
定理が帰結される．

定理 14.9 ベキ根拡大 L/K に対して，有限次可解拡大 L′/K で L ⊂ L′ をみた
すものが存在する．

以上で，この講義の最終目標である定理の証明の準備がすべて整った．
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定理 14.10 (ガロア) f(X) ∈ K[X] の K 上の最小分解体を L とする． f(X)

が K 上ベキ根によって解けるための必要十分条件は L/K が可解拡大であること
である．
証明 L/K が可解拡大ならば，定理 14.8 から，f(X) が K 上ベキ根によって解けるこ
とが直ちにわかる． 逆を示すために，f(X) が K 上ベキ根によって解けるとする． す
なわち f(X) の任意の根 α に対して，ベキ根拡大 Lα/K が存在して α ∈ Lα をみたすと
する． 定理 14.9 を用いれば，Lα ⊂ L′

α をみたす有限次可解拡大 L′
α/K がとれる． よっ

て，f(X) のすべての根 α にわたる合成体
L̃ =

∏
α

L′
α

は，定理 11.5 (2)より K 上ガロアで，そのガロア群 Gal(L̃/K) は可解群の直積の部分群
に同型，したがって可解群となる． 最後に，L̃/K の中間体である L は K 上ガロアだか
ら，系 11.4 (3) より，L/K は可解拡大であることがわかる． □

定理 14.11 f(X) を Q 上の 5次既約多項式とする． f(X) が実根をちょうど
3個もつならば，f(X) は Q 上ベキ根によって解けない．

証明 f(X) の Q 上の最小分解体を L とし，L/Q のガロア群を G とする． G は f(X)

の 5つの根の置換群と考えられるので，5次対称群 S5 の部分群とみなすことができる．
ここで，f(X) のひとつの根 α に対して Q(α) は L/Q の中間体だから，G の位数は
[Q(α) : Q] = 5 で割り切れる． したがって G は位数 5 の元をもつ． このことから，置
換群としての G は長さ 5の巡回置換をもつことが示せる． 一方，複素共役を対応させる
写像 C → C, z 7→ z̄ を L に制限したものを τ ∈ G とおけば，L がちょうど 2個の虚
根をもつことから，τ は互換とみなすことができる．互換および長さ 5の巡回置換をもつ
S5 の部分群は S5 と一致することは，群論の一般論から証明できる．したがって G = S5

であるが，S5 は可解群ではないので L/Q は可解拡大ではない． よって，定理 14.10よ
り f(X) は Q 上ベキ根によって解けない． □

上の定理の条件をみたす 5次既約多項式として，たとえば f(X) = X5 − 5X − 1

があげられる． 実際，既約であることは f(X + 1) にアイゼンシュタインの定理
を素数 5 に関して適用すればよい．また，実根が 3つであることは微積分学の簡
単な計算で確かめられる． よって，f(X) は Q 上ベキ根によって解けない．

定理 14.12 (アーベル) Q 上の 5次方程式には，四則とベキ根によって表され
る「解の公式」は存在しない．

証明 もし存在すれば，有理数係数のどんな 5次方程式の解も Q 上ベキ根で表されるこ
とになる． しかし，上に述べたように Q 上ベキ根によって解けない 5次既約多項式が存
在するから矛盾である． □
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§15. 補遺

次の命題は，例 7.9の最後の方，および，補題 8.5の証明で使われている．

命題 15.1 体 K の乗法群 K× の有限部分群は巡回群である．

証明 A を K× の有限部分群とし，A に属する位数最大の元 a をひとつとる． a で生成
される巡回群 〈a〉 が A に一致することを確かめればよい．そこで，〈a〉 に属さない b ∈ A
が存在するとして矛盾を導く． a, b の位数をそれぞれ m, n とする． いま，素数 p につ
いて

m = pem′, n = pfn′, ただし，p は m′n′ を割り切らない
とすると，ap

e
, bn

′ の位数はそれぞれ m′, pf でこれらは互いに素だから，積 ap
e
bn

′ の位
数は pfm′ である． よって，m の最大性より

pfm′ ≤ m = pem′, ∴ f ≤ e

となる． これが任意の素数 p について成り立つから，m は n の倍数であることがわか
る． とくに bm = 1 であり，m+ 1 個の元

b, 1, a, a2, . . . , am−1 ∈ K×

はすべて多項式 Xm − 1 の根となるが，m 次式は K において m 個より多くの根をもた
ないから矛盾である． □

次に，やり残してあった補題の証明を与える．

補題 15.2 (補題 8.9再掲) 体 K 上代数的である α, β が，β ∈ K(α) をみたすならば，

|Conj(α,K)| = |Conj(α,K(β))| |Conj(β,K)|

が成り立つ．

証明 ふたつの写像

F : Conj(α,K(β))× Conj(β,K) −→ Conj(α,K)

G : Conj(α,K) −→ Conj(α,K(β))× Conj(β,K)

を定義し，それらが互いに逆写像であること，すなわち F ◦G と G ◦F がそれぞれ恒等写
像であることを確かめればよい． そのために，まず δ ∈ Conj(β,K) に対して，定理 6.11
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より，σ(β) = δ をみたす σ ∈ Aut(K/K) が存在することに注意する． このような σ を
各 δ に対して 1つずつ選んで固定し σδ と表すことにする;

σδ ∈ Aut(K/K), σδ(β) = δ ∈ Conj(β,K).

(1) F の定義: γ ∈ Conj(α,K(β)) ならば，γ と α は K(β) 上共役であるから，K 上で
ももちろん共役，よって Conj(γ,K) = Conj(α,K) が成り立つ．さらに，δ ∈ Conj(β,K)
に対して，σδ ∈ Aut(K/K) が上のようにして定まり，σδ(γ) ∈ Conj(γ,K) = Conj(α,K)
であるから，

F : Conj(α,K(β))× Conj(β,K) −→ Conj(α,K), (γ, δ) 7→ σδ(γ)

が定義できる．
(2) G の定義: ε ∈ Conj(α,K) に対して定理 6.11 を適用すれば，τ(α) = ε をみたす
τ ∈ Aut(K/K) が存在する． このとき τ(β) の値は τ の選び方によらず ε のみから定
まる（実際，τ ′ ∈ Aut(K/K) も τ ′(α) = ε をみたすならば，(τ−1 ◦ τ ′

)
(α) = α だから，

τ−1 ◦ τ ′ は K(α) 上で恒等写像であり，さらに β ∈ K(α) だから，(τ−1 ◦ τ ′
)
(β) = β すな

わち τ ′(β) = τ(β) を得る）．また，τ(β) ∈ Conj(β,K) に注意すれば，στ(β) ∈ Aut(K/K)
が ε のみから定まることもわかる． ここで，上の σδ の定義から στ(β)(β) = τ(β)，すな
わち σ−1

τ(β)(τ(β)) = β だから，σ−1
τ(β) ◦ τ ∈ Aut(K/K(β))． よって

σ−1
τ(β)(ε) =

(
σ−1
τ(β) ◦ τ

)
(α) ∈ Conj(α,K(β))

であり

G : Conj(α,K) −→ Conj(α,K(β))× Conj(β,K), ε 7→
(
σ−1
τ(β)(ε), τ(β)

)
が定義される．
(3) F ◦G が恒等写像であることの証明: ε ∈ Conj(α,K) に対して，τ(α) = ε をみたす
τ ∈ Aut(K/K) をとると

F (G(ε)) = F
(
σ−1
τ(β)(ε), τ(β)

)
= στ(β)

(
σ−1
τ(β)(ε)

)
= ε

よって F ◦G は Conj(α,K) 上の恒等写像である．
(4) G ◦ F が恒等写像であることの証明: (γ, δ) ∈ Conj(α,K(β))×Conj(β,K) に対して，
F (γ, δ) = σδ(γ) である．いま γ に対して，ρ(α) = γ をみたす ρ ∈ Aut(K/K(β)) が存在
する．この ρを用いると，σδ(ρ(α)) = σδ(γ)より，τ(α) = σδ(γ)をみたす τ ∈ Aut(K/K)
として τ = σδ ◦ ρ をとることができる． さらに ρ(β) = β なので，τ(β) = σδ(ρ(β)) =
σδ(β) = δ となるから

G(F (γ, δ)) = G(σδ(γ)) =
(
σ−1
τ(β)(σδ(γ)), τ(β)

)
=
(
σ−1
δ (σδ(γ)), δ

)
= (γ, δ)

よって G ◦ F は Conj(α,K(β))× Conj(β,K) 上の恒等写像である． □


