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§14. 可解性

この節でも，前節同様，扱う体はすべて C の部分体とする．

補題 14.1 有限次アーベル拡大 L/K に対して，中間体の列 K1, · · · , Kr で，
K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr−1 ⊂ Kr = L

Ki/Ki−1 は巡回拡大 (i = 1, 2, · · · , r)

をみたすものが存在する．

証明 L/K の次数に関する数学的帰納法によって示す． [L : K] = 1 すなわち L = K

のときは自明だから，[L : K] > 1 として G = Gal(L/K) とおく． 1 6= σ ∈ G をひとつ
とって H = 〈σ〉 とし，対応する L/K の中間体を M とすると，Gal(L/M) = H は巡回
群だから L/M は巡回拡大である．一方，系 11.4 (2) より M/K はアーベル拡大である．
しかも，H 6= {1} より [M : K] < [L : K] だから，帰納法の仮定より各拡大が巡回拡大で
ある中間体の列 K = K0 ⊂ K1 ⊂ · · · ⊂ Ks = M がとれる． これと M ⊂ L を合わせれ
ば証明が完了する． □

定理 14.2 有限次塁アーベル拡大 L/K に対して，ベキ根拡大 L′/K で L ⊂ L′

をみたすものが存在する．

証明 L/K の次数に関する数学的帰納法による． [L : K] = 1 のときはあきらかだから，
n = [L : K] > 1 とする． いま，L/K は塁アーベル拡大だから，前補題を何度か適用す
ることにより，中間体の列 K1, · · · ,Kr で，

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr−1 ⊂ Kr = L

Ki/Ki−1 は巡回拡大 (i = 1, 2, · · · , r)

をみたすものが存在する． 各 i = 1, 2, . . . , r について ni = [Ki : Ki−1] とすると，それ
らの最小公倍数 m は n の約数である． ζ を 1の原始m乗根とすれば，補題 13.8より，
K(ζ)/K はアーベル拡大で次数は m 未満，したがって n 未満である． よって，帰納法
の仮定が適用でき，ベキ根拡大 M/K で K(ζ) ⊂ M をみたすものがとれる．Mi = KiM

とおけば，Mi = KiMi−1 だから，定理 11.6 より Mi/Mi−1 はガロア拡大でそのガロア群
Gal(Mi/Mi−1) は Gal(Ki/Ki−1) の部分群と同型である． よって Mi/Mi−1 は巡回拡大
でその次数 mi は ni の約数であり m の約数でもある．したがって Mi−1 は 1の原始mi

乗根を含み，定理 13.4 が適用できて，Mi/Mi−1 は巡回クンマー拡大，よって 2項拡大と
なる． このことから Mr/M0 すなわち LM/M はベキ根拡大であることがわかり，M/K

がベキ根拡大であることと合わせて定理が証明された． □
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定義 14.3 α を K 上代数的な元とする． α ∈ L をみたすベキ根拡大 L/K が
存在するとき，α は K 上ベキ根によって表されるという．

定義 14.4 f(X) ∈ K[X] とする． f(X) の任意の根が K 上ベキ根によって表
されるとき，f(X) は K 上ベキ根によって解ける，または K 上ベキ根によって
可解であるという．

例 14.5 体 K 上のすべての 2次多項式は K 上ベキ根によって解ける．なぜな
ら，すべての 2次式 f(X) = X2 + bX + c は

f(X) =

(
X +

b

2

)2

−
(
b2

4
− c

)
と変形できるからである．

例 14.6 体 K に対して，1のベキ根は K 上ベキ根によって表される． この事
実は当たり前のように思えるが，n > 1 のとき 2項式 Xn − 1 は K 上既約ではな
いので，定義から直接には導けない．証明は，補題 13.8および定理 14.2を用いて
与えられる (定理 14.7)． なお，n = 3, 5 の場合は以下を参照せよ．
(1) 1の原始 3乗根 ω = e

2π
√
−1

3 について，L = Q(ω) とおく． ω3 = 1 かつ
ω 6= 1 より ω2 + ω + 1 = 0 だから，

ω =
−1±

√
−3

2
,

よって，L = Q
(√

−3
) であって L/Q は 2項拡大，したがって，ω は Q 上ベキ

根によって表される．
(2) ζ を 1の原始 5乗根とすると，ζ4+ ζ3+ ζ2+ ζ+1 = 0．これを ζ2 で割って

ζ2 + ζ + 1 +
1

ζ
+

1

ζ2
= 0.

そこで，η = ζ +
1

ζ
とおけば，η2 = ζ2 +

1

ζ2
+ 2 だから

η2 + η − 1 = 0, ∴ η =
−1±

√
5

2
.

一方，ζ2 − ηζ + 1 = 0 より

ζ =
η ±

√
η2 − 4

2

であるから，2項拡大の列
Q ⊂ Q

(√
5
)
⊂ Q

(√
5,
√

η2 − 4
)

が得られ，ζ ∈ Q
(√

5,
√

η2 − 4
)
． このことから，ζ は Q 上ベキ根によって表さ

れることがわかる．
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定理 14.7 (ガウス) n を自然数とし，ζ を 1の原始 n乗根とすると，任意の体
K に対して ζ は K 上ベキ根で表される．

証明 補題 13.8 から K(ζ)/K はアーベル拡大であり，定理 14.2より，ベキ根拡大 L/K

で K(ζ) ⊂ L をみたすものがとれる． とくに ζ は K 上ベキ根で表される． □

いま，L/K を有限次ガロア拡大としそのガロア群を G とする． さらに L/K

が塁アーベル拡大でもあるとすると，中間体の列

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 はアーベル拡大 (i = 1, 2, · · · ,m)

に G の部分群の列

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm−1 ⊃ Gm = {1}
Gi は Gi−1 の正規部分群で Gi−1/Gi はアーベル群 (i = 1, 2, · · · ,m)

が対応する． 群論で学んだように，このような部分群列が存在する群は可解群と
よばれる． すなわち，塁アーベルであるガロア拡大とは可解拡大のことに他なら
ない． よって，定理 14.2 から次の定理を得る．

定理 14.8 有限次可解拡大 L/K に対して，ベキ根拡大 L′/K で L ⊂ L′ をみた
すものが存在する．

一方で，与えられた有限次塁アーベル拡大 L/K に対して，原始元定理により
L = K(α) と表したとき，L/K の正規閉包（いまの場合，L を含む K 上の最小
のガロア拡大体）L′ は，命題 9.17より

L′ = K(Conj(α,K)) =
∏

β∈Conj(α,K)

K(β)

で与えられる． K 上の有限個の塁アーベル拡大体の合成体が塁アーベル拡大体と
なることは，定理 11.5 (2)を使って（厳密には数学的帰納法により）示すことがで
きるので，L′/K は可解拡大であることわかる． したがって，定理 13.9から次の
定理が帰結される．

定理 14.9 ベキ根拡大 L/K に対して，有限次可解拡大 L′/K で L ⊂ L′ をみた
すものが存在する．

以上で，この講義の最終目標である定理の証明の準備がすべて整った．
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定理 14.10 (ガロア) f(X) ∈ K[X] の K 上の最小分解体を L とする． f(X)

が K 上ベキ根によって解けるための必要十分条件は L/K が可解拡大であること
である．
証明 L/K が可解拡大ならば，定理 14.8 から，f(X) が K 上ベキ根によって解けるこ
とが直ちにわかる． 逆を示すために，f(X) が K 上ベキ根によって解けるとする． す
なわち f(X) の任意の根 α に対して，ベキ根拡大 Lα/K が存在して α ∈ Lα をみたすと
する． 定理 14.9 を用いれば，Lα ⊂ L′

α をみたす有限次可解拡大 L′
α/K がとれる． よっ

て，f(X) のすべての根 α にわたる合成体
L̃ =

∏
α

L′
α

は，定理 11.5 (2)より K 上ガロアで，そのガロア群 Gal(L̃/K) は可解群の直積の部分群
に同型，したがって可解群となる． 最後に，L̃/K の中間体である L は K 上ガロアだか
ら，系 11.4 (3) より，L/K は可解拡大であることがわかる． □

定理 14.11 f(X) を Q 上の 5次既約多項式とする． f(X) が実根をちょうど
3個もつならば，f(X) は Q 上ベキ根によって解けない．

証明 f(X) の Q 上の最小分解体を L とし，L/Q のガロア群を G とする． G は f(X)

の 5つの根の置換群と考えられるので，5次対称群 S5 の部分群とみなすことができる．
ここで，f(X) のひとつの根 α に対して Q(α) は L/Q の中間体だから，G の位数は
[Q(α) : Q] = 5 で割り切れる． したがって G は位数 5 の元をもつ． このことから，置
換群としての G は長さ 5の巡回置換をもつことが示せる． 一方，複素共役を対応させる
写像 C → C, z 7→ z̄ を L に制限したものを τ ∈ G とおけば，L がちょうど 2個の虚
根をもつことから，τ は互換とみなすことができる．互換および長さ 5の巡回置換をもつ
S5 の部分群は S5 と一致することは，群論の一般論から証明できる．したがって G = S5

であるが，S5 は可解群ではないので L/Q は可解拡大ではない． よって，定理 14.10よ
り f(X) は Q 上ベキ根によって解けない． □

上の定理の条件をみたす 5次既約多項式として，たとえば f(X) = X5 − 5X − 1

があげられる． 実際，既約であることは f(X + 1) にアイゼンシュタインの定理
を素数 5 に関して適用すればよい．また，実根が 3つであることは微積分学の簡
単な計算で確かめられる． よって，f(X) は Q 上ベキ根によって解けない．

定理 14.12 (アーベル) Q 上の 5次方程式には，四則とベキ根によって表され
る「解の公式」は存在しない．

証明 もし存在すれば，有理数係数のどんな 5次方程式の解も Q 上ベキ根で表されるこ
とになる． しかし，上に述べたように Q 上ベキ根によって解けない 5次既約多項式が存
在するから矛盾である． □


