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§13. クンマー拡大

以下において扱う体はすべて C の部分体とする． また，自然数 n に対して，
ζn ∈ C を 1の原始 n乗根とする． すなわち，ζn ∈ C× であって，その位数が n

であるとする（ζn = e2πi/n であるとしてよい）．

定理 13.1 n を自然数とし，K が 1の原始 n乗根 ζn を含むとする． a ∈ K× に
対して，αn = a をみたす α を任意にひとつとり L = K(α) とおく．
(1) L は Xn − a の K 上の最小分解体である．
(2) Xn − a が K 上既約（すなわち α の K 上の最小多項式）ならば，L/K

は n次巡回拡大であり，σ(α) = ζnα をみたす K 上の自己同型 σ によって
Gal(L/K) が生成される;

Gal(L/K) = 〈σ〉 = {1, σ, σ2, . . . , σn−1}.

(3) αl ∈ K である最小の自然数 l が存在し，この l に対して X l − αl は K 上
既約である．この場合，l は n の約数であり，L/K は l 次巡回拡大である．

証明 ζ = ζn と略記する．
(1) Xn − a のすべての根は α, ζα, ζ2α, . . . ζn−1α であるが，ζ ∈ K より最小分解体は
K(α) = L と一致する（例 9.12 参照）．
(2) L/K がガロア拡大であることは (1)よりわかる． G = Gal(L/K) とおく． Xn − a
は α の K 上の最小多項式なので，|G| = [L : K] = n である． さらに，ζα は α と共役
なので，定理 6.11より，σ(α) = ζα をみたす σ ∈ G が存在する． このとき，

σ2(α) = σ(ζα) = ζσ(α) = ζ · ζα = ζ2α,

同様にして，σj(α) = ζjα が任意の j ∈ Z について成り立ち，とくに σn(α) = ζnα = α
より σn = idL(= 1) となる． よって |G| = n に注意すれば，

G = {1, σ, σ2, . . . , σn−1} = 〈σ〉

を得る． とくに L/K は n 次巡回拡大である．
(3) 最小の l が存在することはあきらかであり，さらに l が n の約数であることを示す
のも難しくない． いま，ξ = ζn/l とおけば，ξ は 1の原始 l乗根であり，X l − αl のすべ
ての根は ξiα (i = 0, . . . , l − 1) である． よって，もしX l − αl が K 上可約ならば，そ
の既約因子 g(X) ∈ K[X] は，1 ≤ d < l と 0 ≤ i1 < · · · < id ≤ l − 1 を用いて

g(X) = (X − ξi1α) · · · (X − ξidα)

と表され，とくに，その定数項は g(0) = ±ξi1+···+idαd ∈ K となる．一方，ξ = ζn/l ∈ K

だから αd ∈ K でなければならないが，これは l の最小性に矛盾する． L/K が l 次巡回
拡大であることは (2)を援用すればわかる． □
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定義 13.2 前定理のようにして与えられる体の拡大 L/K を自然数 n に関する
巡回クンマー拡大という． n に関する巡回クンマー拡大の合成を，n に関するクン
マー拡大という． とくに，有限次拡大 L/K が n に関するクンマー拡大であると
は，K が 1の原始 n乗根 ζn を含み，有限個の a1, . . . , ar ∈ K× について αn

j = aj
をみたす αj によって L = K(α1, . . . , αr) と表されることである． n に関する有
限次クンマー拡大は，しばしば L = K

(
n
√
a1, . . . , n

√
ar
) とも表される．

補題 13.3 (デデキント) Γ を乗法群とし，σ1, . . . , σn を Γ から C× への相
異なる準同型写像とする． このとき，(c1, . . . , cn) 6= (0, . . . , 0) をみたす任意の
c1, . . . , cn ∈ C に対して

n∑
i=1

ciσi(γ) = c1σ1(γ) + · · ·+ cnσn(γ) 6= 0

をみたす γ ∈ Γ が存在する．

証明 対偶，すなわち，c1, . . . , cn ∈ C とするとき，

∀γ ∈ Γ に対して
n∑

i=1

ciσi(γ) = 0 =⇒ c1 = · · · = cn = 0

を n に関する数学的帰納法によって示す． n = 1 のときはあきらかである． そこで，
n > 1 として，n− 1 のときは成り立つと仮定し，任意の γ ∈ Γ について

(♠) c1σ1(γ) + c2σ2(γ) + · · ·+ cnσn(γ) = 0

とする． いま，σ1 6= σn だから，σ1(β) 6= σn(β) であるような β ∈ Γ がとれる． 等式
(♠) の γ の代わりに βγ を用いれば，

c1σ1(β)σ1(γ) + c2σ2(β)σ2(γ) + · · ·+ cnσn(β)σn(γ) = 0.

これと，(♠) に σn(β) をかけたもの

c1σn(β)σ1(γ) + c2σn(β)σ2(γ) + · · ·+ cnσn(β)σn(γ) = 0

の差を取れば，最後の項 cnσn(β)σn(γ) が消去されて，

c1(σ1(β)− σn(β))σ1(γ) + · · ·+ cn(σn−1(β)− σn(β))σn−1(γ) = 0

が任意の γ ∈ Γ について成り立つ． よって，帰納法の仮定と β の取り方から c1 = 0 を
得る． したがって (♠) は

c2σ2(γ) + · · ·+ cnσn(γ) = 0

と書き換えられ，再び帰納法の仮定より c2 = · · · = cn = 0 を得る． □
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定理 13.4 n を自然数とし，体 K は 1の原始 n乗根 ζn を含むとする． もし
L/K が n 次巡回拡大ならば，ある a ∈ K× が存在して，L = K( n

√
a) と表され

る． すなわち，K 上の n次巡回拡大は巡回クンマー拡大である．

証明 ζ = ζn と略記する． σ を Gal(L/K) の生成元とする;

Gal(L/K) = 〈σ〉 =
{
1, σ, σ2, . . . , σn−1

}
, σn = 1.

いま，Γ = L×, σi = σi−1 および ci = ζ−(i−1) (i = 1, . . . , n) として前補題を適用すれば，
n−1∑
i=0

ζ−iσi(γ) = γ + ζ−1σ(γ) + · · ·+ ζ−(n−1)σn−1(γ) 6= 0

をみたす γ ∈ L× が存在する． この和を α とすると，0 6= α ∈ L であって

σ(α) =

n−1∑
i=0

ζ−iσi+1(γ) = ζ

n−1∑
i=0

ζ−(i+1)σi+1(γ) = ζα

が成り立ち，両辺を n 乗して σ(αn) = αn を得る． σ は Gal(L/K) の生成元だから，αn

は Gal(L/K) の不変体 K に属する． すなわち αn ∈ K である． ここで，系 6.12より{
σj(α) | j = 0, 1, 2, . . . , n− 1

}
⊂ Conj(α,K)

だが，左辺は {
α, ζα, ζ2α, . . . , ζn−1α

} に等しく，α 6= 0 より n 個の元からなるので，
n ≤ |Conj(α,K)| ≤ [K(α) : K] ≤ [L : K] = n,

よって，不等号はすべて等号であり，とくに L = K(α) が得られる． □

定理 13.5 n を自然数とし，体 K は 1の原始 n乗根 ζn を含むとする． このと
き，L/K が n に関する有限次クンマー拡大であるためには，L/K が有限次アー
ベル拡大でガロア群のすべての元の位数が n の約数であることが必要十分である．

証明は，定理 13.1 と定理 13.4 を組み合わせればよい． 後で引用されないので，
ここでは証明を省略する．

定義 13.6 L/K を体の拡大とする．
(1) Xn − a (a ∈ K×) の形の K 上の既約多項式の根 α によって L = K(α) と
表すことができるとき，L/K を 2項拡大という．

(2) 体の有限列 K0, K1, · · · , Km で，

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 は 2項拡大 (i = 1, 2, · · · ,m)

をみたすものが存在するとき，L/K をベキ根拡大という．
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定義 13.7 L/K を代数拡大とする． 中間体の有限列 K0, K1, · · · , Km で，
K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 はアーベル拡大 (i = 1, 2, · · · ,m)

をみたすものがとれるとき，L/K を塁アーベル拡大という．

注意 定理 13.1において，Xn − a が K 上既約ならば L/K は 2項拡大かつ巡
回拡大であるが，たとえ既約でなくても，(3) より，やはり 2項拡大かつ巡回拡大
になる． したがって，一般に有限次クンマー拡大はベキ根拡大でありかつアーベ
ル（したがって塁アーベル）拡大である．

補題 13.8 n を 1より大きい自然数とする． 体 K に対して K(ζn)/K は n よ
り低い次数のアーベル拡大である．
証明 ζ = ζn と略す． 任意の σ ∈ Aut(K/K) に対して σ(ζ) も 1の原始 n乗根だから，
とくに σ(ζ) ∈ K(ζ)，よって K(ζ)/K はガロア拡大である． そのガロア群を G とおく．
σ ∈ G に対して，σ(ζ) = ζj をみたす整数 j が n を法として一意的に定まる． また，上
述のように ζj は 1の原始 n乗根だから，j, n は互いに素である． よって，写像

G −→ (Z/nZ)×, σ 7→ j

が定義できることがわかる． この写像が単射準同型であることを確かめるのは難しくな
い． よって，G は (Z/nZ)× の部分群に同型，とくにアーベル群であり，

[K(ζ) : K] = |G| ≤
∣∣(Z/nZ)×

∣∣ = φ(n) < n.

ここで，φ はオイラー関数である． □

定理 13.9 ベキ根拡大 L/K に対して，有限次塁アーベル拡大 L′/K で L ⊂ L′

をみたすものが存在する．
証明 L/K の中間体の列

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = L

Ki/Ki−1 は 2項拡大 (i = 1, 2, · · · ,m)

が存在する． ここで，Ki−1 上の既約多項式 Xni − ai の根 αi によって Ki = Ki−1(αi)

と表すことができる． そこで，n を n1, . . . , nm の公倍数とし，ζ を 1の原始 n乗根と
して，Mi = Ki(ζ) (i = 0, 1, . . . ,m) とおく． i = 1, . . . ,m に対して，Mi−1 は 1の原
始 ni乗根をもっているから，Mi = Mi−1(αi) は Mi−1 上の巡回クンマー拡大，したがっ
て巡回拡大である． 一方，補題 13.8より，M0 = K(ζ) は K 上のアーベル拡大なので，
Mm = L(ζ) は K 上有限次塁アーベル拡大である． □

上の定理において，べき根拡大と有限次塁アーベル拡大の役割を入れ替えても
正しいことが次節で示される（定理 14.2）． すなわち，これらの拡大は “本質的”

に同等であると考えることができる．


