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§11. ガロア対応

定理 11.1 L/K を有限次ガロア拡大とし，そのガロア群を G とする． いま，
L/K の中間体 M1, M2 がそれぞれ G の部分群 H1, H2 に対応しているとする．
(1) M1 ⊂ M2 と H1 ⊃ H2 は同値である．
(2) 合成体 M1M2 に対応する部分群は H1 ∩H2 である．
(3) M1 ∩M2 に対応する部分群は H1 ∪H2 で生成される G の部分群である．
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証明 (1) まず M1 ⊂ M2 を仮定する． σ ∈ H2 = Gal(L/M2) を任意にとると，

σ(x) = x (∀x ∈ M2) より σ(x) = x (∀x ∈ M1), ∴ σ ∈ Gal(L/M1) = H1

よって H2 ⊂ H1 を得る． 逆に H2 ⊂ H1 を仮定する． x ∈ M1 = LH1 を任意にとると，

σ(x) = x (∀σ ∈ H1) より σ(x) = x (∀σ ∈ H2), ∴ x ∈ LH2 = M2

よって M1 ⊂ M2 を得る．
(2) M1M2 は M1, M2 を含む最小の体だから，(1)より，対応する部分群は H1, H2 に含
まれる最大の部分群 H1 ∩H2 である．
(3) M1∩M2 は M1, M2 に含まれる最大の体だから，(1)より，対応する部分群は H1, H2

を含む最小の群であり，それは H1 ∪H2 で生成される G の部分群である． □

定理 11.2 L/K を有限次ガロア拡大とし，そのガロア群を G とする． M を
L/K の中間体，H を M に対応する G の部分群とする． また，σ ∈ G とする．
このとき，σ(M) は L/K の中間体であり，対応する G の部分群は σHσ−1 である．
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証明 L/K は正規なので σ(L) = L，よって K ⊂ σ(M) ⊂ L となるから σ(M) は L/K
の中間体である． また，M = LH より，α ∈ L に対して

α ∈ M ⇐⇒ τ(α) = α (∀ τ ∈ H).

したがって，
β ∈ σ(M) ⇐⇒ σ−1(β) ∈ M ⇐⇒ τ(σ−1(β)) = σ−1(β) (∀ τ ∈ H)

⇐⇒ (στσ−1)(β) = β (∀ τ ∈ H) ⇐⇒ ρ(β) = β (∀ρ ∈ σHσ−1)

よって，中間体 σ(M) は部分群 σHσ−1 に対応する． □

定理 11.3 L/K を有限次ガロア拡大とし，そのガロア群を G とする． M を
L/K の中間体，H を M に対応する G の部分群とする． このとき，M/K がガ
ロア拡大であるためには，H が G の正規部分群であることが必要十分である．ま
たこのとき M/K のガロア群は G/H と同型である． 詳しくは，制限写像

G = Gal(L/K) −→ Gal(M/K), σ 7→ σ|M

から自然に同型

G/H = Gal(L/K)/Gal(L/M) ∼= Gal(M/K)

が引き起こされる．
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証明 L/K がガロア拡大なので，とくに M/K は分離的である．したがって，M/K が
ガロアであるためには，正規であること，すなわち，任意の σ ∈ G に対して σ(M) = M
が成り立つことが必要十分である． 前定理を用いれば，

σ(M) = M ⇐⇒ σHσ−1 = H

であるが，右の等式が任意の σ ∈ G に対して成り立つことは，H が G の正規部分群で
あることを示している． 後半は，準同型定理から導かれる． □
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系 11.4 L/K を有限次ガロア拡大，M をその中間体とする．
(1) L/K がアーベル拡大ならば，L/M, M/K はともにアーベル拡大である．
(2) L/K が巡回拡大ならば，L/M, M/K はともに巡回拡大である．
(3) L/K が可解拡大ならば，L/M も可解拡大である． さらに M/K がガロア
拡大（すなわち Gal(L/M) が Gal(L/K) の正規部分群）ならば，M/K も
可解拡大である．

証明 H を群 G の部分群とする． G がアーベル群ならば，H はアーベル群かつ G の
正規部分群であって，剰余群 G/H もアーベル群である． このことと前定理から (1) が
得られる． また，アーベル群を巡回群としても同様のことがいえるから (2) も成り立つ．
(3) は，G が可解群のとき H も可解群であり，さらに H が G の正規部分群ならば剰余
群 G/H も可解群になることから導かれる． □

定理 11.5 体の拡大 Ω/K の中間体 M1, M2 がともに K 上の有限次ガロア拡大
体であるとする．
(1) M1M2 および M1 ∩M2 はともに K 上ガロアである．
(2) Gal(M1M2/K) は直積 Gal(M1/K)×Gal(M2/K) の部分群に同型である．
(3) M1 ∩M2 = K ならば，自然な同型

Gal(M1M2/K) ∼= Gal(M1/K)×Gal(M2/K)

が存在する．

証明 (1) は，定理 8.13 から分離性が，定理 9.14 から正規性が導かれることからわかる．
(2)と (3)を示すために，準同型写像

Γ : Gal(M1M2/K) −→ Gal(M1/K)×Gal(M2/K), σ 7→ (σ|M1 , σ|M2)

を考える． いま，σ ∈ KerΓ ならば，σ|M1 = idM1，σ|M2 = idM2 だから，σ|M1M2 =
idM1M2，したがって KerΓ = {idM1M2} = {1}，すなわち Γ は単射であり (2) が得られ
た．次に，G = Gal(M1M2/K) とおき，M1, M2 に対応する G の部分群を H1, H2 とす
る． M1, M2 は K 上ガロアだから，定理 11.3 より，H1, H2 は G の正規部分群で，自
然な同型

Gal(M1/K) ∼= G/H1, Gal(M2/K) ∼= G/H2

が得られる． したがって，上で定義した単射準同型写像 Γ は

Γ : G −→ G/H1 ×G/H2

と書き換えることができる． ここで，H1, H2 の正規性から，H1 ∪H2 で生成される群は

H1H2 = {h1h2 |h1 ∈ H1, h2 ∈ H2 }
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と一致する．一方，定理 11.1 (2) より，H1 ∩H2 は M1M2 に対応するから単位群である;

H1 ∩H2 = {1}． よって，H1H2 は直積群 H1 ×H2 と同型であり，さらに M1 ∩M2 に
対応していることが定理 11.1 (3) からわかる． そこで，とくに M1 ∩M2 = K の場合を
考えると，G = H1H2

∼= H1 ×H2 であって，G の位数と G/H1 ×G/H2 の位数は等しく
なる． したがって，Γ は同型写像であり (3) が確かめられた． □

定理 11.6 L/K が有限次ガロア拡大ならば，K 上の任意の拡大体 F に対して，
LF/F はガロア拡大であり，そのガロア群は Gal(L/(L ∩ F )) と同型である． と
くに Gal(LF/F ) は Gal(L/K) の部分群と同型である．
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証明 L/K は分離拡大なので，L の任意の元は K 上分離的だから，F 上でも分離的，
したがって命題 8.10 等を用いれば，LF/F は分離拡大である． 一方，定理 9.15 より
LF は F 上正規でもあるから，LF/F はガロア拡大である． 定理の後半を示すために，
M = L ∩ F とおき，準備として

[L : M ] = [LF : F ]

が成り立つことを確かめよう． L/K は有限次分離拡大だから，原始元定理（定理 8.7）よ
り，L = K(α) となるような α ∈ L がとれる． f(X) を α の K 上の最小多項式，g(X)
を α の F 上の最小多項式とする． f(X) ∈ F [X] と考えれば，f(X) は g(X) で割り切
れることがわかるから，B ⊂ Conj(α,K) が存在して，

g(X) =
∏
β∈B

(X − β)

と書くことができる． ここで，L/K は正規であるから B ⊂ Conj(α,K) ⊂ L，したがっ
て，g(X) の係数は L ∩ F = M に属する． さらに，g(X) は F 上既約だから M 上で
も既約，よって α の M 上の最小多項式となるから，L = M(α)，LF = F (α) に注意す
れば，

[L : M ] = [M(α) : M ] = deg g = [F (α) : F ] = [LF : F ]

が得られた． さて，準同型写像
∆ : Gal(LF/F ) −→ Gal(L/M), σ 7→ σ|L

を考える（M ⊂ F なので定義可能）．いま，σ ∈ Ker∆とすると σ|L = idL だが，もともと
σ は F 上の写像なので σ|F = idF，したがって σ = idLF であり，Ker∆ = {idLF } = {1}，
よって ∆ は単射である． さらに，定理 10.3 と上で示した [LF : F ] = [L : M ] から，
Gal(LF/F ) と Gal(L/M) の位数は等しいので，∆ は同型写像であることが導かれる．□


