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§8. 分離拡大

定理 6.3より，体 K 上の多項式 f(X) は，K において X − α の形の 1次式の
積に分解される． 同じ 1次式をまとめてしまえば

f(X) = c (X − α1)
m1 (X − α2)

m2 · · · (X − αr)
mr

ただし c ∈ K, αi ∈ K, mi ∈ N

と表すことができる．ここで，α1, . . . , αr は f(X) の相異なる根のすべてである．
このとき，mi = 1 であるような αi を f(X) の単根といい，mi ≥ 2 である αi を
重根という．

定義 8.1 体 K 上の多項式 f(X) について，K におけるすべての根が単根であ
るとき，分離的であるという． 一方，K において重根をもつとき，非分離的であ
るという． 分離的な多項式を分離多項式，非分離的な多項式を非分離的多項式と
もいう．

定理 8.2 K を標数 0 の体，または有限体とすると，K 上の任意の既約多項式
は分離的である．

証明 K 上の既約多項式 f(X) が重根 α をもつとする． このとき

f(X) = (X − α)2g(X) (g(X) ∈ K[X])

とかけるが，微分すれば

f ′(X) = 2(X − α)g(X) + (X − α)2g′(X),

したがって，f(α) = f ′(α) = 0 となる． ここで，K が標数 0 の体ならば，f ′(X) は零多
項式ではなく，deg f ′(X) < deg f(X) が成り立つ． 一方で，f(X) は α の K 上の最小
多項式（の定数倍）なので矛盾する． そこで以下，K は標数 p > 0 の有限体であるとす
る． この場合でも，f ′(X) が零多項式でなければ同様に矛盾する． f ′(X) が零多項式で
あるとすると，簡単な考察から

f(X) = c0 + c1X
p + c2X

2p + · · ·+ cmXmp (ci ∈ K)

と書けることが確かめられる． 一方，定理 7.4 より |K| = pn (n ≥ 1) とかけるが，この
とき，任意の c ∈ K に対して cp

n
= c が成り立つから，とくに ci = bpi (bi ∈ K) と表す

ことができ，したがって

f(X) = bp0 + bp1X
p + bp2X

2p + · · ·+ bpmXmp =
(
b0 + b1X + b2X

2 + · · ·+ bmXm
)p

となって，f(X) の既約性に矛盾する． □
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定義 8.3 K を体とする． α ∈ K の K 上の最小多項式が分離的であるとき，α

は K 上分離的であるという．

定理 6.14の直後の注意から，次の定理を得る．

定理 8.4 K を体とする． α ∈ K について，次は同値である．
(i) α は K 上分離的である．
(ii) |Conj(α,K)| = [K(α) : K] が成り立つ．

補題 8.5 K を体とし，β, γ ∈ K とする． β が K 上分離的ならば，

K(β, γ) = K(α)

をみたす α ∈ K(β, γ) が存在する．

証明 K が有限体のとき: K の有限次拡大体である K(β, γ) も有限体なので，§15 補
遺で証明される命題 15.1『体の乗法群の有限部分群は巡回群である』を使えば，K(β, γ)×

は巡回群である． α をその生成元とすれば，K(β, γ) = K(α) が成り立つ．
K が無限体のとき: β, γ から定まる K の有限部分集合

S =

{
γ − γ′

β′ − β

∣∣∣∣β 6= β′ ∈ Conj(β,K), γ′ ∈ Conj(γ,K)

}
に属さない s ∈ K がとれる． α = γ + sβ とおく． このとき K(α) ⊂ K(β, γ) であるが，
一方で，もし β ∈ K(α) が示されれば，γ = α− sβ ∈ K(α) がいえて K(β, γ) = K(α) が
得られる． そこで，以下，β 6∈ K(α) を仮定して矛盾を導く． さて，β は K 上分離的だ
から K(α) 上も分離的であり，したがって定理 8.4より

|Conj(β,K(α))| = [K(α, β) : K(α)]

が成り立つが，β 6∈ K(α) を仮定したから右辺は 1より大きくなっている．よって，β′ 6= β
である β′ ∈ Conj(β,K(α)) がとれる． ここで，Conj(β,K(α)) ⊂ Conj(β,K) だから
β′ ∈ Conj(β,K) でもあることに注意する． いま，g(X) を γ の K 上の最小多項式とし，
G(X) = g(α− sX) とおくと，G(X) は K(α) 上の多項式であって

G(β) = g(α− sβ) = g(γ) = 0.

よって，G(X) は β の K(α) 上の最小多項式で割り切れ，したがって G(β′) = 0 が成り
立つ． よって，g(α− sβ′) = 0 より，α− sβ′ ∈ Conj(γ,K)． そこで γ′ = α− sβ′ とお
けば

γ′ = (γ + sβ)− sβ′, ∴ s =
γ − γ′

β′ − β
∈ S

となって s の取り方に矛盾する． □
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定義 8.6 代数拡大 L/K において，すべての α ∈ L が K 上分離的であるとき，
L/K を分離拡大という． また，このとき L は K 上分離的であるともいう．

定理 8.7 (原始元定理) 任意の有限次分離拡大は単純拡大である．すなわち L/K

が有限次分離拡大ならば，L = K(α) をみたす α ∈ L が存在する．

証明 次数 [L : K] に関する数学的帰納法で示す． [L : K] = 1 すなわち L = K のとき
はあきらか． 以下，[L : K] > 1 とし，次数が [L : K] より小さい場合は成り立つと仮定
する（帰納法の仮定）． [L : K] > 1 より，β 6∈ K である β ∈ L が存在する． このとき

[L : K(β)] < [L : K] かつ L/K(β) は分離拡大

だから，帰納法の仮定より L = K(β, γ) をみたす γ ∈ L が存在する． そこで，補題 8.5

を適用すれば，定理の主張を得る． □

定理 8.8 K を標数 0 の体，または有限体とする．
(1) K 上のすべての既約多項式は分離的である．
(2) K 上のすべての代数拡大体は分離的である．
(3) K 上のすべての有限次拡大体は単純である．

証明 定理 8.2 および定理 8.7からすぐに得られる． □

次の補題は，定理 6.11を使って証明される（§15 補遺を参照）．
補題 8.9 体 K 上代数的である α, β が，β ∈ K(α) をみたすならば，

|Conj(α,K)| = |Conj(α,K(β))| |Conj(β,K)|

が成り立つ．

命題 8.10 体 K 上分離的である α に対して，K(α)/K は分離拡大である．

証明 定理 6.14より，任意の β ∈ K(α) に対して
|Conj(α,K(β))| ≤ [K(α) : K(β)], |Conj(β,K)| ≤ [K(β) : K]

が一般に成り立っている． もし，β が K 上分離的でないならば，定理 8.4より後者の等
号は成り立たず，したがって，前補題から

|Conj(α,K)| < [K(α) : K(β)][K(β) : K] = [K(α) : K].

ところが，α は K 上分離的だから，再び定理 8.4より |Conj(α,K)| = [K(α) : K] でなけ
ればならず，矛盾である．よって，すべての β ∈ K(α) は K 上分離的である． □
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定理 8.11 M を代数拡大 L/K の中間体とするとき，次は同値である．
(i) L/K は分離拡大である．
(ii) L/M , M/K はともに分離拡大である．

証明 (i) ならば (ii) は明らかなので，以下では (ii) を仮定して (i)，すなわち，L/K が
分離的であることを示す．
L/K が有限次拡大のとき: L/M，M/K はともに有限次分離拡大だから，原始元定理
(定理 8.7)より，M = K(β), L = M(γ) をみたす β ∈ M, γ ∈ L が存在する． β は K
上分離的だから，定理 8.4より

|Conj(β,K)| = [K(β) : K]

が成り立ち，さらに L = K(β, γ) に補題 8.5が適用できて，L = K(α) となる α ∈ L を
取ることができる． このとき，α は M = K(β) 上分離的だから，再び定理 8.4から

|Conj(α,K(β))| = [K(β, α) : K(β)] = [K(α) : K(β)].

したがって，補題 8.9を用いて
|Conj(α,K)| = [K(α) : K]

が導かれ，定理 8.4と命題 8.10から，L = K(α) が K 上分離的であることが示された．
L/K が無限次拡大のとき: 任意の δ ∈ L が K 上分離的であることを確かめればよい．
δ の M 上の最小多項式の係数をすべて K に添加した M の部分体を M0 とする． この
とき，M0/K が分離的であることはあきらかだが，命題 8.10より M0(δ)/M0 も分離的で
あり，しかも M0(δ)/K は有限次拡大である．よって，上で示したことから M0(δ)/K は
分離的，とくに δ が K 上分離的であることが確かめられた． □

命題 8.12 K を体とし，α, β ∈ K が K 上分離的であるとする． このとき，
K(α, β)/K は分離拡大である． とくに，α± β, αβ, α/β はどれも K 上分離的で
ある．

証明 命題 8.10 より，K(α)/K は分離拡大，さらに，β は K(α) 上も分離的だから，
K(α, β)/K(α) も分離拡大である． よって，前定理より結論を得る． □

定理 8.13 L, E がともに K 上分離的ならば，LE, L∩E はどちらも K 上分離
的である．

証明 LE の元は L∪E の有限個の元から加減乗除によって表されるから，前命題によっ
て K 上分離的であることがわかり，したがって LE/K は分離拡大である． (L ∩E)/K

が分離拡大であることは明らかである． □


