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§7. 標数

K を体とする．自然数 n に対して 1 ∈ K の n 個の和を Γ(n) とする;

Γ(n) = 1 + · · ·+ 1︸ ︷︷ ︸
n

さらに，Γ(−n) = −Γ(n)，Γ(0) = 0 と定める．

補題 7.1 上で定めた写像
Γ : Z −→ K

は，可換環の準同型写像であり，その核は，p = 0または素数によって，Ker Γ = (p)

と表される（Ker Γ = pZ と表してもよい）．

証明 【準同型であること】 すべての m,n ∈ Z に対して
Γ(m+ n) = Γ(m) + Γ(n), Γ(mn) = Γ(m) Γ(n)

が成り立つことを確かめればよい． m,n のどちらかが 0 のときはあきらかに成り立つ．
m,n > 0 のときは数学的帰納法を用いて確認できる． n < 0 のときは Γ(−n) = −Γ(n)

を使って正のときに帰着させれればよい． m < 0 のときも同様である．
【核について】 Γ の像は体K の部分環なので整域である． よって，準同型定理より Γ

の核は Z の素イデアル，したがって KerΓ = (0)，または素数 p を用いて KerΓ = (p)

と表される． □

定義 7.2 体 K に対して，Ker Γ = (p) をみたす p ≥ 0 を K の標数という．

補題 7.1より，K の標数は 0 または素数である．さらに，整域 R に対しても同
様にして標数を定義することができ，その場合でも，標数は 0 または素数である．
写像 Γ を用いず直接的に標数を定義することもできる． K の単位元 1 を 2個
以上 p 個足し合わせて初めて 0 となる（すなわち

1 + · · ·+ 1︸ ︷︷ ︸
p

= 0

となる）とき，p は素数である（証明してみよ）．この p を K の標数とする． 1

をいくつ足し合わせても 0 にならないとき，K の標数を 0 とする．

定義 7.3 素数 p に対して
F p = Z/pZ

とかく． F p は p 個の元からなる有限体であって，標数は p である．
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定理 7.4 K を標数 p の体とする．
(1) p = 0 ならば，単射準同型

Q −→ K

が一意的に存在する． すなわち，K は有理数体 Q と同型な部分体をもつ．
(2) p > 0 すなわち p が素数ならば，単射準同型

F p −→ K

が一意的に存在する． すなわち，K は有限体 F p と同型な部分体をもつ．

証明 (1) n 6= 0 ならば Γ(n) 6= 0 なので，a =
m

n
∈ Q (m,n ∈ Z, n 6= 0) のとき，

Γ̃(a) =
Γ(m)

Γ(n)

とおくことによって
Γ̃ : Q −→ K

を定めることができる． Γ̃ が準同型写像であることを示すのは難しくない． よって Γ̃ は
単射準同型写像である． 次に一意性を示すために，

∆ : Q −→ K

も単射準同型であるとする．このとき，Γ̃(1) = 1 = ∆(1) であり，数学的帰納法を用いて
Γ̃(n) = ∆(n) がすべての n ∈ N に対して成り立つことがわかる． このことから，すべ
ての a ∈ Q に対して Γ̃(a) = ∆(a) を示すことは難しくない．
(2) Γ : Z → K の核が (p) = pZ であることから，準同型定理を適用すれば，単射準同
型写像

F p = Z/pZ −→ K

が得られる． 一意性については，F p の元が 1 + · · ·+ 1 と表されることを使えば，すぐ
にわかる． □

定理 7.5 K が有限体ならば，K の標数 p は素数であり，K は F p の有限次拡
大体と同型である．とくに，K が F p の n次拡大体と同型ならば，K は pn 個の
元からなる有限体である．

証明 前半は前定理からあきらかなので，後半のみ示す． K は F p の n次拡大体である
としてよい． α1, . . . , αn を K の F p 上の基底とすれば，K の任意の元は

c1α1 + · · ·+ cnαn (ci ∈ F p)

の形に一意的に表され，各 ci の取り方は p 通りだから，K の元の個数は pn である．□
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命題 7.6 p を素数とする．
(1) 体 K の標数が p > 0 ならば，任意の a, b ∈ K に対して

(a+ b)p = ap + bp

が成り立つ．
(2) F p 上の多項式 f(X) に対して，

f(X)p = f(Xp)

が成り立つ．

証明 (1) 二項定理より

(a+ b)p = ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp.

ここで，p は素数なので，1 ≤ j ≤ p− 1 のときの二項係数は(
p

j

)
=

p!

j! (p− j)!
≡ 0 (mod p).

よって，K において
(
p

j

)
ajbp−j = 0 となり，求める等式を得る．

(2) f(X) を具体的に
f(X) = cnX

n + cn−1X
n−1 + · · ·+ c1X + c0 (ci ∈ F p)

と表せば，(1)の証明と同様の議論を繰り返し使って
f(X)p = cpnX

np + cpn−1X
(n−1)p + · · ·+ cp1X

p + cp0.

ここで，フェルマーの定理より cpi = ci が成り立つから，
f(X)p = cn(X

p)n + cn−1(X
p)n−1 + · · ·+ c1X

p + c0 = f(Xp)

を得る． □

例 7.7 −1 は 3 を法として平方非剰余なので，X2+1 は F 3 上既約である．し
たがって，§5 の考察から，2次拡大 K/F 3 がとれて，K において X2 + 1 は根を
もつ． 実際には K は剰余環 F 3[X]/(X2 + 1) と同型であり，X の属する類に対
応する K の元を α とすると，具体的に

K = { 0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α } .

と書ける． ただし，F 3 = {0, 1, 2} とする． このとき，α2 = −1 に注意すれば
(1 + α)(2α) = 2α + 2α2 = 2α− 2 = 1 + 2α

のように積が計算できる（すべての積をチェックして，K の乗積表を作成してみよ）．
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例 7.8 任意の素数 p に対して，F p 上の 2次拡大体が存在することが以下のよ
うにしてわかる．
(1) p が奇素数の場合，p を法として平方非剰余である整数 u が存在するから，
前の例と同様にして，F p[X]/(X2 − u) と同型な F p 上の 2次拡大体が存在する．
(3) p = 2 の場合，X2 +X +1 が F 2 上既約であるから，やはり F 2 上の 2次拡
大体が存在する．

例 7.9 p を素数とし，K/F p を有限次拡大で n = [K : F p] とする． 写像 ϕ を
ϕ : K −→ K, α 7→ αp

によって定める． このような ϕ を K のフロベニウス写像という．
(1) ϕ は K から K への準同型写像である．
なぜなら，α, β ∈ K に対して，ϕ(αβ) = ϕ(α)ϕ(β) はあきらかであり，さらに定
理 7.6から ϕ(α + β) = ϕ(α) + ϕ(β) もいえるから．
(2) ϕ は F p 上の同型写像である． すなわち ϕ ∈ Aut(K/F p)．
なぜなら，a ∈ F p に対して ϕ(a) = ap = a がいえるから（フェルマーの定理）．
(3) 自然数 j に対して，ϕ の j 個の合成を ϕj とする;

ϕj = ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
j

さらに ϕ0 = id（恒等写像）とする． ϕj ∈ Aut(K/F p) である．
(4) 0 < j < n のとき，ϕj 6= id．
なぜなら，もし ϕj = id ならば，すべての α ∈ K に対して α = ϕj(α) = αpj だか
ら，K のすべての元は多項式 Xpj − X の根である． しかし，定理 7.5より，K

の元の個数は pn なので，pj 次多項式の根だけでは尽くせないはずなので矛盾．
(5) ϕj (0 ≤ j < n) は互いに相異なる．
なぜなら，もし ϕj = ϕk (0 ≤ j < k < n) ならば ϕk−j = id となって (4)に反する．
(6) Aut(K/F p) = {id, ϕ, ϕ2, . . . , ϕn−1}．
なぜなら，あきらかに Aut(K/F p) ⊃ {id, ϕ, ϕ2, . . . , ϕn−1}． (5)より右辺は n 個
の元をもつから |Aut(K/F p)| ≥ n． 一方，命題 15.1（§15 補遺参照）より，K×

は巡回群であり，その生成元を γ とすれば K = F p(γ) なので，定理 6.14が適用
できて |Aut(K/F p)| ≤ [K : F p] = n． よって，不等式はすべて等号に置き換わ
り，上の包含関係も等号で結ばれることがわかる．
(7) ϕn = id．
なぜなら，ϕn ∈ Aut(K/F p) だから，(6)より ϕn = ϕj (0 ≤ j < n) をみたす j が
ある． もし j > 0 ならば，ϕn−j = id かつ 0 < n − j < n であり (4)に反する．
したがって j = 0 であり ϕn = ϕ0 = id．


