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§4. 代数拡大

定義 4.1 L/K を体の拡大とする． L の任意の元が K 上代数的であるとき，L

は K 上代数的であるという． また，L/K を代数拡大という． L が K 上代数的
でないとき，L は K 上超越的であるといい，L/K を超越拡大という．

命題 4.2 有限次拡大は代数拡大である．

証明 L/K を有限次拡大とする． 任意の α ∈ L に対して，L/K の中間体である K(α)

は，定理 2.9 より K 上の有限次拡大体だから，定理 3.7 によって，α は K 上代数的であ
る． L の任意の元が K 上代数的あることが示されたから，L/K は代数拡大である．□

命題 4.3 体の拡大 L/K に対して次は同値である．

(i) L/K は有限次拡大である．
(ii) K 上代数的な有限個の元 α1, · · · , αn ∈ L が存在して，L = K(α1, · · · , αn)

が成り立つ．

証明 (i)のとき，ベクトル空間としての L の K 上の基底 α1, · · · , αn をとれば，前命題
よりこれらはすべて K 上代数的であり，(ii)が導かれる． 逆に，(ii)のときは，

K0 = K, K1 = K0(α1), K2 = K1(α2), . . . , Kn = Kn−1(αn)

とおけば，各 i = 1, . . . , n について，αi は Ki−1 上代数的だから，定理 3.7より Ki/Ki−1

は有限次，よって，定理 2.9 から L = Kn は K 上有限次であり，(i)を得る． □

定理 4.4 M を体の拡大 L/K の中間体とするとき，次は同値である．

(i) L/K は代数拡大である．
(ii) L/M, M/K はともに代数拡大である．

証明 (i)ならば (ii)が成り立つのはあきらかなので，以下，(ii)を仮定して (i)，すなわ
ち，任意の α ∈ L が K 上代数的であることを確かめればよい． (ii)より L/M は代数的
だから，α は M 上代数的，したがって，α を根とする M 上の零でない多項式

g(X) = c0 + c1X + · · ·+ cnX
n (ci ∈ M)
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が存在する． いま，M0 = K(c0, c1, . . . , cn) とおくと，α は M0 上代数的であるから，定
理 3.7より M0(α)/M0 は有限次である．一方，仮定 (ii)より M/K も代数的なので ci は
K 上代数的，よって，前命題より M0/K は有限次である． したがって，定理 2.9 から，
M0(α)/K は有限次拡大であり，さらに命題 4.2から代数拡大でもある． とくに α は K

上代数的である． □

例 4.5 自然数 n に対して，Xn − 1 = 0 の根である複素数全体を Wn とする;

Wn = { z ∈ C | zn = 1 } .

いま，
ζn = e

2π
√
−1

n = cos
2π

n
+
√
−1 sin

2π

n

とおけば，Wn = { ζjn | j = 0, 1, . . . , n− 1 } と具体的にかけ，これが Xn − 1 の根
全体の集合と一致する．よって，命題 4.3より Q(Wn)/Q は有限次，したがって，
命題 4.2より代数拡大である（実際には，Q(Wn) = Q(ζn) が成り立っているので，命題
4.3は必要とせず，定理 3.7を使えばよい）．とくに n が素数 p の場合，ζp は Xp − 1

の既約因子 Xp−1 +Xp−2 + · · ·+X + 1 の根だから，定理 3.8より，
[Q(Wp) : Q] = [Q(ζp) : Q] = p− 1.

この等式は，任意の自然数 n に対して，オイラー関数 φ を用いた等式
[Q(Wn) : Q] = [Q(ζn) : Q] = φ(n)

に拡張されるが，証明は少し難しい．

補題 4.6 L/K を体の拡大とし，A ⊂ L とすると，K(A) は A の有限部分集合
B のすべてを走らせることにより

K(A) =
⋃
B

K(B)

と表される． すなわち，任意の α ∈ K(A) に対して，α ∈ K(β1, · · · , βn) である
ような有限個の β1, · · · , βn ∈ A がとれる．

証明 M =
⋃
B

K(B) とおく． このとき，M ⊂ K(A) は直ちにわかる． 一方，あきらか

に K ⊂ M であり，また A ⊂ M もすぐにわかるから，M が体であれば K(A) ⊂ M，し
たがって補題を得る． 以下，M が体であることを確かめる． M の任意の元 β, γ 6= 0 に
対して，β ∈ K(B)，γ ∈ K(C) をみたす A の有限部分集合 B,C がとれる． D = B ∪C

とおけば，D も A の有限部分集合であって β, γ ∈ K(D) であるが，K(D) は体なので，
β, γ の和，差，積，商は K(D) に属する． さらに K(D) ⊂ M なので，これらは M に
属する． よって，M は体である． □
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定理 4.7 L/K を体の拡大とし，A ⊂ L とする． A の任意の元が K 上代数的
ならば K(A)/K は代数拡大である．

証明 任意の α ∈ K(A) に対して，前補題から，α ∈ K(β1, · · · , βn) をみたす βi ∈ A が
とれる． 仮定より βi は K 上代数的だから，拡大 K(β1, · · · , βn)/K は，命題 4.3より有
限次，よって命題 4.2より代数的，とくに α は K 上代数的である． □

系 4.8 L/K を体の拡大とする． α, β ∈ L (β 6= 0) がともに K 上代数的なら
ば，それらの和と差 α± β，積 αβ，商 α/β はどれも K 上代数的である．

証明 前定理より K(α, β) は K 上代数的であり，α± β, αβ, α/β ∈ K(α, β) だから結論
を得る． □

例 4.9 複素数平面における単位円を S とする．また，ある自然数 n に対して，
zn = 1 をみたす複素数全体を W で表す．

S = { z ∈ C | |z| = 1 } =
{
x+ iy ∈ C | x, y ∈ R, x2 + y2 = 1

}
,

W = { z ∈ C | ∃n ∈ N s.t. zn = 1 } =
∞⋃
n=1

Wn.

すべての n ∈ N について，Wn ⊂ W ⊂ S，したがって Q(Wn) ⊂ Q(W ) ⊂ Q(S)．
このとき，以下が成り立つ．

(1) Q(W )/Q は有限次ではない代数拡大である．
(2) Q(S)/Q は超越拡大である． したがって Q(S)/Q(W ) も超越拡大である．

(1)は，定理 4.7および例 4.5から容易に証明できる． また，0 < ε < 1 をみたす
Q 上超越的な実数 ε（たとえば ε = π/4 など . . .）をとれば，√

1− ε2 + εi は S

に属し，Q 上超越的であることが確かめられるから，(2)も示される．

命題 4.10 L/K を体の拡大とし，M をその中間体とする． α ∈ L が K 上代数
的であるとき，

[M(α) : M ] ≤ [K(α) : K]

が成り立つ．
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証明 α の K 上の最小多項式を f(X) とすると，deg f = [K(α) : K]． 一方，f(X) は
M 上の多項式でもあるから，補題 3.5より，[M(α) : M ] ≤ deg f であり，求める不等式
を得る． □

例 4.11 X3 − 1 の 1 でない根のひとつを ω とする（1 の原始 3乗根）． この
とき，ω, ω2 は X2 +X + 1 の 2根である． X3 − 2 の実根を α とすれば，他の
根は αω, αω2 で与えられる． X3 − 2 は Q 上既約だから，定理 3.8より Q(α)/Q

は 3次拡大である． このとき，

(a) M1 = Q(ω) とおけば，[M1(α) : M1] = 3 = [Q(α) : Q],

(b) M2 = Q(αω) とおけば，[M2(α) : M2] = 2 < 3 = [Q(α) : Q]

が成り立ち，それぞれ，前命題において，等号が成り立つ例，成り立たない例と
なっている．

定義 4.12 Ω/K を体の拡大とし，L,M をその中間体とするとき，L,M をと
もに含む Ω の最小の部分体を L,M の合成体といい LM で表す． すなわち，
LM = L(M) = M(L) である．

定理 4.13 L,M を体の拡大 Ω/K の中間体とする． L/K が有限次拡大ならば，

[LM : M ] ≤ [L : K]

が成り立ち，とくに，LM/M も有限次拡大である．

証明 命題 4.3より，L = K(α1, . . . , αn) をみたす K 上代数的な元 αi がとれる． そこ
で，体の拡大列 K0 ⊂ K1 ⊂ · · · ⊂ Kn および M0 ⊂ M1 ⊂ · · · ⊂ Mn を

K0 = K, K1 = K0(α1), K2 = K1(α2), . . . , Kn = Kn−1(αn)

M0 = M, M1 = M0(α1), M2 = M1(α2), . . . , Mn = Mn−1(αn)

と定めれば，命題 4.10より [Mi : Mi−1] ≤ [Ki : Ki−1]．さらに，L = Kn かつ LM = Mn

だから，定理 2.9 を何度か適用して

[LM : M ] = [Mn : Mn−1] · · · [M1 : M0] ≤ [Kn : Kn−1] · · · [K1 : K0] = [L : K]

が導かれる． □


