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§1. 2次, 3次, 4次方程式の解の公式

定理 1.1 2次方程式
X2 + bX + c = 0

の解は，b2 − 4c の平方根をひとつ固定し，それを R とするとき，
−b+R

2
,

−b−R

2

で与えられる．

証明 解を α, β とすれば，解と係数の関係から，α+ β = −b, αβ = c． よって，

(α− β)2 = (α+ β)2 − 4αβ = b2 − 4c

そこで，この平方根のひとつを R とし，α, β に関する連立一次方程式{
α+ β = −b

α− β = R

を解けば，(
α
β

)
=

(
1 1
1 −1

)−1( −b
R

)
=

1

2

(
1 1
1 −1

)(
−b
R

)
=

1

2

(
−b+R
−b−R

)
を得る． □

定理 1.2 3次方程式
X3 + bX2 + cX + d = 0

の解は，Y に関する 2次方程式

Y 2 + (2b3 − 9bc+ 27d)Y + (b2 − 3c)3 = 0

の 2解それぞれの 3乗根 R,S を，RS = b2−3c を満たすように一組固定するとき，
−b+R + S

3
,

−b+ ω2R + ωS

3
,

−b+ ωR + ω2S

3

で与えられる． ここで，ω は 1の原始 3乗根

ω = e
2πi
3 = cos

2π

3
+ i sin

2π

3
=

−1 +
√
−3

2

である．
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証明 ３つの解を α, β, γ とし，
Q = α+ β + γ,

R = α+ ωβ + ω2γ,

S = α+ ω2β + ωγ

とおく． これらを α, β, γ の連立方程式と考え，係数行列を M とする． ここで

|M | =

∣∣∣∣∣∣
1 1 1
1 ω ω2

1 ω2 ω

∣∣∣∣∣∣ = 3ω2 − 3ω = 3ω(ω − 1) 6= 0

より，M は正則である． よって，Q,R, S が求まれば，M の逆行列を実際に計算するこ
とにより  α

β
γ

 = M−1

 Q
R
S


から α, β, γ が得られる． さて，解と係数の関係から Q = −b だが，

R3 + S3 = −2b3 + 9bc− 27d, RS = b2 − 3c

も，ちょっとがんばればわかる． したがって，R3, S3 は定理にある Y に関する 2次方程
式の解である． R,S は，これらの 3乗根として求まり，定理の主張が導かれる． □

定理 1.3 4次方程式

X4 + bX3 + cX2 + dX + e = 0

の解は，Y に関する 3次方程式

Y 3 − (3b2 − 8c)Y 2 + (3b4 − 16b2c+ 16c2 + 16bd− 64e)Y − (b3 − 4bc+ 8d)2 = 0

の 3解それぞれの平方根 R,S, T を，RST = −b3 + 4bc− 8d を満たすように一組
固定するとき，

−b+R + S + T

4
,

−b+R− S − T

4
,

−b−R + S − T

4
,

−b−R− S + T

4

で与えられる．

証明 α, β, γ, δ を４つの解として
Q = α+ β + γ + δ,

R = α+ β − γ − δ,

S = α− β + γ − δ,

T = α− β − γ + δ
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とおく． Q,R, S, T が求まれば，上の式を α, β, γ, δ に関する連立方程式とみなして解け
ばよい． 解と係数の関係から Q = −b だが，

R2 + S2 + T 2 = 3b2 − 8c,

R2S2 + S2T 2 + T 2R2 = 3b4 − 16b2c+ 16c2 + 16bd− 64e,

RST = −b3 + 4bc− 8d

も，うんとがんばって計算すれば得られる． したがって，R2, S2, T 2 は定理にある Y に
関する 3次方程式の解である． R,S, T は，これらの平方根として求まり，定理の主張が
導かれる． □

定義 1.4 n 個の不定元 (変数) x1, x2, . . . , xn の多項式 f(x1, . . . , xn) は，任意の
σ ∈ Sn に対して

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

が成り立つとき，対称式であるという（正確には x1, . . . , xn の対称式という）．

定義 1.5 n 個の不定元 (変数) x1, x2, . . . , xn に対して，

(X − x1)(X − x2) . . . (X − xn)

を展開した式

Xn − s1X
n−1 + s2X

n−2 + · · ·+ (−1)n−1sn−1X + (−1)nsn

によって定まる s1, . . . , sn を，x1, . . . , xn の基本対称式という． とくに，sj を j

次の基本対称式という．

例 1.6 基本対称式は対称式である．

n = 2 のとき
{
s1 = x1 + x2

s2 = x1x2

n = 3 のとき


s1 = x1 + x2 + x3

s2 = x1x2 + x1x3 + x2x3

s3 = x1x2x3

n = 4 のとき


s1 = x1 + x2 + x3 + x4

s2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

s3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

s4 = x1x2x3x4
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例 1.7 x1, x2, x3 の対称式

f(x1, x2, x3) = x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3

は，上に定めた n = 3 のときの基本対称式 s1, s2, s3 によって

f(x1, x2, x3) = s21 − 3s2

と表すことができる．

定理 1.8 (対称式の基本定理) x1, . . . , xn の任意の対称式 f(x1, . . . , xn) に対し
て，ある n変数多項式 G(X1, . . . , Xn) が存在して，

f(x1, . . . , xn) = G(s1, . . . , sn)

が成り立つ． すなわち，任意の対称式は基本対称式の多項式として表すことがで
きる．

例 1.9 証明は，難しいことは使わないが煩雑なので省略する． 以下に例を挙げて証明
の代わりとする．
(1) f(x, y) = x4 + y4 を x, y の基本対対称式

s = x+ y, t = xy

の多項式として表す．
f(x, y) = x4 + y4

f(x, y)− s4 = −4x3y − 6x2y2 − 4xy3

f(x, y)− s4 + 4s2t = 2x2y2

f(x, y)− s4 + 4s2t− 2t2 = 0

よって，f(x, y) = s4 − 4s2t+ 2t2．

(2) g(x, y, z) = x3(y + z) + y3(z + x) + z3(x+ y) を x, y, z の基本対称式
s = x+ y + z, t = xy + yz + zx, u = xyz

の多項式で表す．
g(x, y, z) = x3y + x3z + xy3 + xz3 + y3z + z3y

g(x, y, z)− s2t = −2x2y2 − 5x2yz − 2x2z2 − 5xy2z − 5xyz2 − 2y2z2

g(x, y, z)− s2t+ 2t2 = −x2yz − xy2z − xyz2

g(x, y, z)− s2t+ 2t2 + su = 0

ゆえ，g(x, y, z) = s2t− 2t2 − su．


