§7. 標数

K を体とする. 自然数 n に対して $1 \in K$ の n 個の和を $\Gamma(n)$ とする;

$$\Gamma(n) = \underbrace{1 + \dots + 1}_{n}$$

さらに、 $\Gamma(-n) = -\Gamma(n)$ 、 $\Gamma(0) = 0$ と定める.

補題 7.1 上で定めた写像

$$\Gamma: \mathbf{Z} \longrightarrow K$$

は,可換環の準同型写像であり,その核は,p=0 または素数によって, $\operatorname{Ker}\Gamma=(p)$ と表される($\operatorname{Ker}\Gamma=p\mathbf{Z}$ と表してもよい).

証明 【準同型であること】 すべての $m,n \in \mathbb{Z}$ に対して

$$\Gamma(m+n) = \Gamma(m) + \Gamma(n), \qquad \Gamma(mn) = \Gamma(m) \Gamma(n)$$

が成り立つことを確かめればよい. m,n のどちらかが 0 のときはあきらかに成り立つ. そこで, m,n がどちらも正のとき, どちらか一方が負のとき, どちらも負のときに場合分けし, 数学的帰納法を用いて確認すればよい. 難しくはないが少し面倒なので省略する. 【核について】 Γ の像は体 K の部分環なので整域である. よって, 準同型定理より Γ の核は \mathbf{Z} の素イデアル, したがって $\ker \Gamma = (0)$, または素数 p を用いて $\ker \Gamma = (p)$ と表される.

定義 7.2 体 K に対して、 $Ker \Gamma = (p)$ をみたす $p \ge 0$ を K の標数という.

補題 7.1 より,K の標数は 0 または素数である. さらに,整域 R に対しても同様にして標数を定義することができ,その場合でも,標数は 0 または素数である. 以下のように,写像 Γ を用いず直接的に標数を定義することもできる. K の単位元 1 を 2 個以上 p 個足し合わせて初めて 0 となる(すなわち

$$\underbrace{1+\dots+1}_{p}=0$$

となる)とき, p は素数である(証明してみよ). この p を K の標数とする. 1 をいくつ足し合わせても 0 にならないとき, K の標数を 0 とする.

定義 7.3 素数 p に対して

$$oldsymbol{F}_p = oldsymbol{Z}/poldsymbol{Z}$$

とかく. F_p は p 個の元からなる**有限体**であって, 標数は p である.

定理 7.4 p を素数とする. K/\mathbf{F}_p が n 次拡大ならば, K は p^n 個の元からなる標数 p の有限体である.

証明 $\alpha_1, \ldots, \alpha_n$ を K の \mathbf{F}_p 上の基底とすれば, K の任意の元は

$$c_1\alpha_1 + \dots + c_n\alpha_n \qquad (c_i \in \boldsymbol{F}_p)$$

の形に一意的に表され、各 c_i の取り方は p 通りだから、K の元の個数は p^n である. \square

定理 7.5 K を標数 p の体とする.

(1) p=0 ならば、単射準同型

$$Q \longrightarrow K$$

が一意的に存在する. すなわち, K は有理数体 Q と同型な部分体をもつ.

(2) p>0 すなわち p が素数ならば、単射準同型

$$\mathbf{F}_p \longrightarrow K$$

が一意的に存在する. すなわち、K は有限体 F_p と同型な部分体をもつ.

証明 (1) $n \neq 0$ ならば $\Gamma(n) \neq 0$ なので, $a = \frac{m}{n} \in \mathbf{Q} \ (m, n \in \mathbf{Z}, n \neq 0)$ のとき,

$$\tilde{\Gamma}(a) = \frac{\Gamma(m)}{\Gamma(n)}$$

とおくことによって

$$\tilde{\Gamma}: \mathbf{Q} \longrightarrow K$$

を定めることができる. $\tilde{\Gamma}$ が準同型写像であることを示すのは難しくない. よって $\tilde{\Gamma}$ は 単射準同型写像である. 次に一意性を示すために,

$$\Delta: \mathbf{Q} \longrightarrow K$$

も単射準同型であるとする. このとき, $\tilde{\Gamma}(1)=1=\Delta(1)$ であり,数学的帰納法を用いて $\tilde{\Gamma}(n)=\Delta(n)$ がすべての $n\in \mathbf{N}$ に対して成り立つことがわかる. このことから,すべての $a\in \mathbf{Q}$ に対して $\tilde{\Gamma}(a)=\Delta(a)$ を示すことは難しくない.

(2) $\Gamma: \mathbf{Z} \to K$ の核が $(p) = p\mathbf{Z}$ であることから、準同型定理を適用すれば、単射準同型写像

$$\boldsymbol{F}_{p} = \boldsymbol{Z}/p\boldsymbol{Z} \longrightarrow K$$

が得られる. 一意性については, \mathbf{F}_p の元が $1+\cdots+1$ と表されることを使えば,すぐにわかる.

命題 7.6 p を素数とする.

(1) 体 K の標数が p > 0 ならば、任意の $a, b \in K$ に対して

$$(a+b)^p = a^p + b^p$$

が成り立つ.

(2) \mathbf{F}_p 上の多項式 f(X) に対して,

$$f(X)^p = f(X^p)$$

が成り立つ.

証明 (1) 二項定理より

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^2 + \dots + \binom{p}{p-1}ab^{p-1} + b^p.$$

ここで、p は素数なので、 $1 \le j \le p-1$ のときの二項係数は

$$\binom{p}{j} = \frac{p!}{j! (p-j)!} \equiv 0 \pmod{p}.$$

よって,K において $\binom{p}{j}a^jb^{p-j}=0$ となり,求める等式を得る.

(2) f(X) を具体的に

$$f(X) = c_n X^n + c_{n-1} X^{n-1} + \dots + c_1 X + c_0 \qquad (c_i \in \mathbf{F}_p)$$

と表せば、(1)の証明と同様の議論を繰り返し使って

$$f(X)^p = c_n^p X^{np} + c_{n-1}^p X^{(n-1)p} + \dots + c_1^p X^p + c_0^p.$$

ここで、フェルマーの定理より $c_i^p = c_i$ が成り立つから、

$$f(X)^p = c_n(X^p)^n + c_{n-1}(X^p)^{n-1} + \dots + c_1X^p + c_0 = f(X^p)$$

を得る. □

例 7.7 -1 は 3 を法として平方非剰余なので, X^2+1 は F_3 上既約である. したがって, $\S 5$ の考察から,2 次拡大 K/F_3 がとれて,K において X^2+1 は根をもつ. 実際には K は剰余環 $F_3[X]/(X^2+1)$ と同型であり,X の属する類に対応する K の元を α とすると,具体的に

$$K = \{0, 1, 2, \alpha, 1 + \alpha, 2 + \alpha, 2\alpha, 1 + 2\alpha, 2 + 2\alpha\}.$$

と書ける. ただし, $F_3 = \{0,1,2\}$ とする. このとき, $\alpha^2 = -1$ に注意すれば

$$(1+\alpha)(2\alpha) = 2\alpha + 2\alpha^2 = 2\alpha - 2 = 1 + 2\alpha$$

のように積が計算できる(すべての積をチェックして、Kの乗積表を作成してみよ).

例 7.8 任意の素数 p に対して、 \mathbf{F}_p 上の 2 次拡大体が存在することが以下のようにしてわかる.

- (1) p が奇素数の場合, p を法として平方非剰余である整数 u が存在するから, 前の例と同様にして, $\mathbf{F}_p[X]/(X^2-u)$ と同型な \mathbf{F}_p 上の 2 次拡大体が存在する.
- (3) p=2 の場合, X^2+X+1 が \mathbf{F}_2 上既約であるから, やはり \mathbf{F}_2 上の 2 次拡大体が存在する.

例 7.9 p を素数とし、 K/\mathbf{F}_p を有限次拡大で $n = [K:\mathbf{F}_p]$ とする. 写像 ϕ を

$$\phi: K \longrightarrow K, \qquad \alpha \mapsto \alpha^p$$

によって定める. このような ϕ を K の**フロベニウス写像**という.

- (1) ϕ は K から K への準同型写像である. なぜなら, $\alpha, \beta \in K$ に対して, $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta)$ はあきらかであり,さらに定理 7.6 から $\phi(\alpha+\beta) = \phi(\alpha) + \phi(\beta)$ もいえるから.
- (2) ϕ は \mathbf{F}_p 上の同型写像である. すなわち $\phi \in \operatorname{Aut}(K/\mathbf{F}_p)$. なぜなら, $a \in \mathbf{F}_p$ に対して $\phi(a) = a^p = a$ がいえるから(フェルマーの定理).
- (3) 自然数 j に対して, ϕ の j 個の合成を ϕ^j とする;

$$\phi^j = \underbrace{\phi \circ \dots \circ \phi}_{j}$$

さらに $\phi^0 = id$ (恒等写像) とする. $\phi^j \in Aut(K/\mathbf{F}_p)$ である.

(4) 0 < j < n のとき, $\phi^j \neq id$.

なぜなら、もし $\phi^j=\mathrm{id}$ ならば、すべての $\alpha\in K$ に対して $\alpha=\phi^j(\alpha)=\alpha^{p^j}$ だから、K のすべての元は多項式 $X^{p^j}-X$ の根である. しかし、定理 7.4 より、K の元の個数は p^n なので、 p^j 次多項式の根だけでは尽くせないはずなので矛盾.

(5) ϕ^{j} (0 $\leq j < n$) は互いに相異なる.

なぜなら、もし $\phi^j = \phi^k \ (0 < j < k < n)$ ならば $\phi^{k-j} = \mathrm{id}$ となって (4) に反する.

(6) Aut $(K/\mathbf{F}_p) = \{ id, \phi, \phi^2, \dots, \phi^{n-1} \}.$

なぜなら、あきらかに $\operatorname{Aut}(K/\mathbf{F}_p) \supset \{\operatorname{id}, \phi, \phi^2, \dots, \phi^{n-1}\}$. (5) より右辺は n 個の元をもつから $|\operatorname{Aut}(K/\mathbf{F}_p)| \geq n$. 一方、命題 15.1(§15 補遺参照)より、 K^{\times} は巡回群であり、その生成元を γ とすれば $K = \mathbf{F}_p(\gamma)$ なので、定理 6.14 が適用できて $|\operatorname{Aut}(K/\mathbf{F}_p)| \leq [K:\mathbf{F}_p] = n$. よって、不等式はすべて等号に置き換わり、上の包含関係も等号で結ばれることがわかる.

(7) $\phi^n = id$.

なぜなら、 $\phi^n \in \operatorname{Aut}(K/\mathbf{F}_p)$ だから、(6) より $\phi^n = \phi^j \ (0 \le j < n)$ をみたす j がある. もし j > 0 ならば、 $\phi^{n-j} = \operatorname{id}$ かつ 0 < n-j < n であり (4) に反する. したがって j = 0 であり $\phi^n = \phi^0 = \operatorname{id}$.