§6. 代数的閉体と共役元

定義 6.1 体 L の代数拡大体が L のみであるとき, L を代数的閉体という.

つまり、L が代数的閉体であるとは、L のどんな拡大体 M をとっても、 $\mathbb{F}_{\alpha} \in M$ が L 上代数的ならば $\alpha \in L$ 』 となることである.

- M 6.2 (1) C は代数的閉体である(代数学の基本定理).
 - (2) R は代数的閉体ではない.

定理 6.3 体 L に対して次は同値である.

- (i) L は代数的閉体である.
- (ii) L 上の既約多項式はすべて1次式である.
- (iii) L 上の定数でない任意の多項式は L 上の 1 次式の積として表される.
- (iv) L 上の定数でない任意の多項式は L で根をもつ.

証明 $\underline{(i)\Rightarrow(ii)}$: f(X) を L 上の既約多項式とする. クロネッカーの定理(定理 5.6)より,L の拡大体 M と $\alpha\in M$ で $f(\alpha)=0$ をみたすものがとれるが,仮定 (i) より $\alpha\in L$ であるから, $\deg f=[L(\alpha):L]=1$ を得る.

 $\underline{\text{(ii)}}\Rightarrow\text{(iii)}$: L 上の定数でない任意の多項式は,L 上の既約多項式の積として表されるから,仮定 (ii) より (iii) が導かれる.

(iii)⇒(iv): あきらか.

 $\underline{(\mathrm{iv})}$ \Rightarrow $\underline{(\mathrm{i})}$: M/L を代数拡大とするとき,任意の $\alpha \in M$ に対して, $\alpha \in L$ であることを確かめればよい. いま, α の L 上の最小多項式を f(X) とすると,仮定 (iv) より,f(X) は根 $\beta \in L$ をもつ. 一方,定理 5.10 より $L(\alpha)$ と $L(\beta)$ は L 上同型であり,とくに L 上の次数は等しいから $[L(\alpha):L]=[L(\beta):L]=1$,ゆえに $L(\alpha)=L$,すなわち $\alpha \in L$ でなければならない.

定義 6.4 体 K の代数拡大体であって代数的閉体であるものを K の代数的閉包 という.

定理 6.5 Ω が代数的閉体ならば、 Ω に含まれる任意の部分体に対して、その代数的閉包が Ω の中に一意的に存在する.

証明 (存在すること) K を Ω の任意の部分体とする. K 上代数的な Ω の元全体 $L = \{ \alpha \in \Omega \, | \, \alpha \text{ is } K \text{ 上代数的} \}$

は,定理 4.7 または系 4.8 を用いれば,K 上の代数拡大体であることがわかる. そこで,以下,L が代数的閉体であることを示す. f(X) を L 上の定数でない任意の多項式とする. f(X) は Ω 上の多項式でもあるが, Ω が代数的閉体であるという仮定から,定理 6.3 (iv) を用いれば, $f(\alpha)=0$ である $\alpha\in\Omega$ がとれる. また, $f(\alpha)=0$ より α は L 上代数的であるが,L/K が代数拡大であることに注意すれば,定理 4.4 より α は K 上代数的、よって,L の定義から $\alpha\in L$ である. そこで,再び定理 6.3 (iv) を用いて,L が代数的閉体であることが導かれる.

(一意性) Ω の部分体 L_1 , L_2 がどちらも K 上の代数的閉包であるとする. 任意の $\alpha \in L_1$ に対して, α は K 上代数的だから,もちろん L_2 上も代数的だが, L_2 は代数 的閉体なので $\alpha \in L_2$. したがって $L_1 \subset L_2$. 役割を入れ替えれば $L_2 \subset L_1$ も導かれ, $L_1 = L_2$ が得られた.

例 6.6 (1) C は R の代数的閉包である.

- (2) Q の代数的閉包は C の中で一意的に定まるが、それは C ではない.
- (3) L が K の代数的閉包ならば,L/K の任意の中間体 M は K 上の代数拡大体であり,さらに L は M の代数的閉包でもある.

定理 6.7(シュタイニッツ) 任意の体 K に対してその代数的閉包が存在する. さらに、 L_1, L_2 がどちらも体 K の代数的閉包ならば、K 上の同型写像 $L_1 \rightarrow L_2$ が存在する.

証明 (方針のみ) K 上の代数拡大体全体 A は,包含関係を順序とする順序集合 (A, \subset) となっている. このとき,(A, \subset) は帰納的である. 実際,S を A の全順序部分集合とすると, $M_0 = \bigcup_{M \in S} M$ はあきらかに A に属し S の上限となっている. したがって,ツォルンの補題により A は極大元 L をもつ. L/K は代数拡大だから,もし E/L が代数拡大ならば,定理 4.4 より,E/K も代数拡大,よって $E \in A$ となるから L の極大性より E = L でなければならい. このことは L が代数的閉体であること示している. したがって,L は K 上の代数的閉包である. 後半(同型写像の存在)もツォルンの補題を用いて証明できるが,ここでは省略する. (じつは,A が集合として定義されるかどうか疑わしいという意味で,この証明は不完全である. 単に "K 上の代数拡大体全体"というだけではなく,何らかの集合論的な制約を加えて A を定義しなおす必要がある.)

以下において、体 K に対して、代数的閉包をひとつ固定し \overline{K} で表す.

K 上の任意の代数拡大体は \overline{K}/K の中間体と K 上同型になる. なぜなら, M/K を任意の代数拡大とすると, M の代数的閉包 L は K の代数的閉包でもあるから,

前定理より, K 上の同型写像 $L \to \overline{K}$ が存在し, それによる M の像は \overline{K}/K の中間体となるからである.

そこで、とくに断らない限り以下では K 上の代数拡大体は \overline{K}/K の中間体であり、また K 上代数的な元も \overline{K} に属しているものとする.

定義 6.8 体の拡大 L/K に対して, L から L への K 上の同型写像を, L の K 上の自己同型写像, または L/K の自己同型写像という. それら全体の集合は, 写像の合成に関して群になっている. それを $\mathrm{Aut}(L/K)$ で表し, L の K 上の自己同型群, または L/K の自己同型群という;

 $\operatorname{Aut}(L/K) = \{ \sigma \mid \sigma : L \to L, K 上の同型写像 \}.$

 $\sigma, \tau \in \operatorname{Aut}(L/K)$ の合成 $\sigma \circ \tau$ を、積のように $\sigma \tau$ で表す.

定理 6.9 L が \overline{K}/K の中間体で、

$$\tau:L\longrightarrow \overline{K}$$

が K 上の準同型写像であるとする. このとき, τ の延長 $\sigma \in \operatorname{Aut}(\overline{K}/K)$ が存在する. すなわち,K 上の同型写像

$$\sigma: \overline{K} \longrightarrow \overline{K}$$

で、任意の $a \in L$ に対して $\sigma(a) = \tau(a)$ であるものがとれる.

この証明も、ふつうツォルンの補題を使って行われる. 少し面倒なので省略する.

定義 6.10 K を体とする. $\alpha, \beta \in \overline{K}$ それぞれの K 上の最小多項式が一致するとき, α, β は K 上共役であるという. また, β を α の K 上の共役元全体の集合を $\operatorname{Conj}(\alpha, K)$ で表す. 言い換えると, α の K 上の最小多項式の(\overline{K} における)根全体の集合が $\operatorname{Conj}(\alpha, K)$ である.

定理 6.11 体 K と $\alpha, \beta \in \overline{K}$ に対して次は同値である.

- (i) α, β は K 上共役である.
- (ii) $\sigma(\alpha) = \beta$ をみたす $\sigma \in \operatorname{Aut}(\overline{K}/K)$ が存在する.

証明 (i)⇒(ii): (i) を仮定すると,定理 5.10 より, K 上の同型写像

$$\tau: K(\alpha) \longrightarrow K(\beta) \subset \overline{K}$$

で $\tau(\alpha)=\beta$ であるものが存在する. そこで,定理 6.9 を適用すれば (ii) が得られる. $(\text{ii})\Rightarrow (\text{ii})$ f(X) を α の K 上の最小多項式とすれば,(ii) のような $\sigma\in \operatorname{Aut}(\overline{K}/K)$ に対して,

$$f(\beta) = f(\sigma(\alpha)) = \sigma(f(\alpha)) = 0.$$

これは, f(X) が β の K 上の最小多項式でもあることを示しているから, (i) を得る. \square

系 6.12 体 K と $\alpha \in \overline{K}$ に対して、

$$\operatorname{Conj}(\alpha, K) = \{ \sigma(\alpha) \mid \sigma \in \operatorname{Aut}(\overline{K}/K) \}$$

が成り立つ.

例 6.13 $z \in C$ の複素共役 \bar{z} は、z の R 上の共役元であり、 $\mathrm{Conj}(z,R) = \{z,\bar{z}\}$ 、さらに $\mathrm{Aut}(C/R)$ は複素共役写像を生成元とする位数 2 の巡回群である.

定理 6.14 体 K と $\alpha \in \overline{K}$ に対して、

$$|\operatorname{Aut}(K(\alpha)/K)| \le |\operatorname{Conj}(\alpha, K)| \le |K(\alpha)| \le$$

が成り立つ.

証明 $\sigma \in \operatorname{Aut}(K(\alpha)/K)$ に対して $\sigma(\alpha) \in \operatorname{Conj}(\alpha, K)$ を対応させることにより、単射 $\operatorname{Aut}(K(\alpha)/K) \longrightarrow \operatorname{Conj}(\alpha, K)$

が定まり、前半の不等式が導かれる. 次に、f(X) を α の K 上の最小多項式とすると、 $|\mathrm{Conj}(\alpha,K)| = \text{``}f(X)\text{'} の根の個数'' \leq \deg f = [K(\alpha):K]$

を得る.

注意 "f(X) の根の個数" $\leq \deg f$ としたのは, f(X) が重根をもつ可能性があるからである。 重根をもたない場合,根の個数は次数と一致する.

例 6.15 $\sqrt{2}$ の Q 上の最小多項式は X^2-2 , したがって

$$\operatorname{Conj}(\sqrt{2}, \boldsymbol{Q}) = \{\sqrt{2}, -\sqrt{2}\}.$$

また, $\sigma \in \operatorname{Aut}(\boldsymbol{Q}(\sqrt{2})/\boldsymbol{Q})$ とすると, $\sigma(\sqrt{2}) = \pm \sqrt{2}$. 符号のとり方により, $\sigma = \operatorname{id}$ (恒等写像) または $\sigma(\sqrt{2}) = -\sqrt{2}$ となるから, 後者をあらためて σ と定めれば,

$$\operatorname{Aut}(\boldsymbol{Q}(\sqrt{2})/\boldsymbol{Q}) = \{ \operatorname{id}, \sigma \}$$

となる. よって、定理6.14の不等式はすべて等号になっている.

例 6.16 X^3-2 の実根 $\alpha=\sqrt[3]{2}$ と他の根 $\alpha\omega$, $\alpha\omega^2$ について,

$$\operatorname{Conj}(\alpha, \mathbf{Q}) = \{ \alpha, \alpha\omega, \alpha\omega^2 \}.$$

一方, 同型写像 $\mathbf{Q}(\alpha) \to \mathbf{Q}(\alpha)$ によって α は α にしか写らないから

$$\operatorname{Aut}(\boldsymbol{Q}(\alpha)/\boldsymbol{Q}) = \{ \operatorname{id} \}.$$

よって、この場合は定理 6.14 の左の不等号は 1 < 3 となっていて、等号ではない.