§5. 根の添加

以下で扱う準同型写像はどれも零写像ではないとする. このとき、

体から(単位元をもつ)環への準同型写像は単射

であることに注意する. 【理由】 体 K から環 R への準同型写像 $\sigma: K \to R$ の核 $\operatorname{Ker} \sigma$ は体 K のイデアルだから, $\{0\}$ または K のどちらかであるが, いま, σ は零写像 ではないとしているので, $\operatorname{Ker} \sigma = \{0\}$. したがって σ は単射である.

とくに、体から体への準同型写像が以下で頻繁に現れるが、これらはすべて単 射準同型である.

定義 5.1 L/K を体の拡大とする. $\sigma: L \to M$, $\tau: K \to M$ がそれぞれ L, K から体 M への準同型写像であって,

$$\forall a \in K$$
 に対して $\sigma(a) = \tau(a)$

をみたすとき, σ は τ の L への延長, あるいは, τ は σ の K への制限であるという. また, このとき $\tau = \sigma|_K$ と表す.

定義 5.2 L, M がともに体 K の拡大体で、準同型写像 $\sigma: L \to M$ が K の 恒等写像 $\mathrm{id}_K: K \to K$ の延長であるとき、つまり、すべての $a \in K$ について $\sigma(a) = a$ が成り立つとき、 σ を K 上の準同型写像という.

定義 5.3 体 L から体 M への準同型写像 $\sigma: L \to M$ が全射であるとき, σ を同型写像といい, L と M は同型であるという. このとき

$$L \cong M$$

と表すことが多い.

定義 5.4 可換環 R から可換環 S への準同型写像

$$\sigma: R \longrightarrow S$$

が与えられたとき,R 上の多項式 $f(X) \in R[X]$ に対して,その係数に σ をほど こして得られる S 上の多項式を $f^{\sigma}(X)$ と表す. すなわち, $f(X) = \sum c_i X^i$ のと き $f^{\sigma}(X) = \sum \sigma(c_i) X^i$ と定める. このようにして,多項式環の間の準同型写像

$$R[X] \longrightarrow S[X].$$
 $f(X) \mapsto f^{\sigma}(X)$

が自然に定義される.

定理 5.5 f(X) が体 K 上の既約多項式ならば、剰余環 K[X]/(f(X)) は体である. ここで、

包含写像 $\iota: K \longrightarrow K[X]$, 自然な全射 $\nu: K[X] \longrightarrow K[X]/(f(X))$

の合成写像として

$$\sigma = \nu \circ \iota : K \longrightarrow K[X]/(f(X))$$

を定めると、 σ は体の準同型写像である. さらに、 $x=\nu(X) \ (=X+(f(X)) \in K[X]/(f(X)))$ とおけば、 $f^{\sigma}(x)=0$ が成り立つ.

証明 K[X] は PID だから,既約元で生成されるイデアル (f(X)) は極大イデアルであり,したがって,それによる剰余環 K[X]/(f(X)) は体である. また, ι , ν はどちらも準同型写像だから, σ は準同型写像である. いま,

$$f(X) = c_0 + c_1 X + \dots + c_n X^n \qquad (c_i \in K)$$

とすれば、 $\iota(c_i) = c_i \in K \subset K[X]$ だから、 $\sigma(c_i) = \nu(c_i)$ 、したがって

$$f^{\sigma}(x) = \nu(c_0) + \nu(c_1)\nu(X) + \dots + \nu(c_n)\nu(X)^n = \nu(f(X)) = 0$$

となる.

定理 5.6 (クロネッカー) 体 K 上の定数でない任意の多項式 f(X) に対して, K の拡大体 L とその元 α で $f(\alpha)=0$ をみたすものが存在する.

証明 f(X) の K 上の既約因子をあらためて f(X) とおくことにより、初めから f(X) は K 上の既約多項式であるとしてよい. このとき,L=K[X]/(f(X)), $\alpha=X+(f(X))\in L$ とおけば,定理 5.5 より,L は体であり,単射準同型写像 $\sigma:K\to L$ が定義できて, $f^{\sigma}(\alpha)=0$ をみたす. そこで, σ の像 $\sigma(K)$ を K と同一視すればよい.

注意 定理 5.6 から,K 上の既約多項式 f(X) に対して,K の拡大体 L と f(X) の根 $\alpha \in L$ が存在する. この α を用いて,準同型写像

$$\varphi_{\alpha}: K[X] \longrightarrow L, \qquad g(X) \mapsto g(\alpha)$$

が定義できて、 $\operatorname{Im} \varphi_{\alpha} = K(\alpha) \subset L$ がわかる(§3 を参照). 一方、 $\operatorname{Ker} \varphi_{\alpha}$ が K[X] のイデアル (f(X)) に一致することが、f(X) の K 上の既約性から確認できる(定理 3.8 参照). したがって、準同型定理より、 φ_{α} は同型写像

$$\tilde{\varphi}_{\alpha}: K[X]/(f(X)) \longrightarrow K(\alpha)$$

を引き起こす. なお,定理 5.5 の準同型写像 σ と $\tilde{\varphi}_{\alpha}$ との合成 $\tilde{\varphi}_{\alpha} \circ \sigma$ は,K から $K(\alpha)$ への包含写像に他ならない.

例 5.7 X^2+1 は実数体 \mathbf{R} 上の既約多項式であり、その根 i に対して、 $\mathbf{R}(i)$ は剰余環 $\mathbf{R}[X]/(X^2+1)$ と同型である. $\mathbf{C}=\mathbf{R}(i)$ とかけば、

$$\mathbf{C} \cong \mathbf{R}[X]/(X^2+1).$$

1,i は C の R 上の基底であって,C の任意の元は a+bi $(a,b\in R)$ の形に一意的に表される. ここで,C の 2 元

$$a + bi$$
, $c + di$ $(a, b, c, d \in \mathbf{R})$

に "対応" する多項式 a+bX, $c+dX \in \mathbf{R}[X]$ の積

$$ac + (ad + bc)X + bdX^{2} = (ac - bd) + (ad + bc)X + bd(X^{2} + 1)$$

は、 $R[X]/(X^2+1)$ においては (ac-bd)+(ad+bc)X と同じ類に属する. つまり

$$(a+bX)(c+dX) \equiv (ac-bd) + (ad+bc)X \pmod{(X^2+1)}$$

であり、これはよく知られた複素数における積の公式

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

に対応する. この例は、虚数単位 i を導入しなくても複素数体が構成できることを示している.

例 5.8 $f(X) = X^3 - 4X + 2$ は \mathbf{Q} 上既約であり、その任意の根 α に対して、 $\mathbf{Q}(\alpha)$ は剰余環 $\mathbf{Q}[X]/(f(X))$ と同型である;

$$\mathbf{Q}(\alpha) \cong \mathbf{Q}[X]/(f(X)).$$

 $1,\alpha,\alpha^2$ は $\mathbf{Q}(\alpha)$ の \mathbf{Q} 上の基底であり, $\mathbf{Q}(\alpha)$ の任意の元は $1,\alpha,\alpha^2$ の \mathbf{Q} 上の 1 次結合で表される. たとえば

$$\beta = 1 + \alpha^2, \qquad \gamma = 3 - 2\alpha + \alpha^2$$

の積は、次の様に計算される. まず、多項式の積を計算して得られる4次式

$$(1+X^2)(3-2X+X^2) = X^4 - 2X^3 + 4X^2 - 2X + 3$$

を *f*(*X*) で割って

$$X^{4} - 2X^{3} + 4X^{2} - 2X + 3 = (X - 2)f(X) + (8X^{2} - 12X + 7).$$

このとき、余り $8X^2-12X+7$ に対応する $\mathbf{Q}(\alpha)$ の元が $\beta\gamma$ である. こうして、積 $\beta\gamma=7-12\alpha+8\alpha^2$ が計算できた.

例 5.9 $g(X) = X^3 + X^2 + X + 1$ は \mathbf{Q} 上既約ではなく, $g(X) = (X+1)(X^2+1)$ のように \mathbf{Q} 上の既約因子に分解される. この分解に対応して,剰余環 $\mathbf{Q}[X]/(g(X))$ は

$$Q[X]/(g(X)) \cong (Q[X]/(X+1)) \oplus (Q[X]/(X^2+1)) \cong Q \oplus Q(i).$$

のように体の直和と同型になることが確かめられる. 一般に,体 K 上の多項式 g(X) が可約であってかつ重根をもたないならば,剰余環 K[X]/(g(X)) は複数個 の体の直和と同型である.

定理 5.10 体 K 上の既約多項式 f(X) とその任意の 2 根 α,β に対して,K 上の同型写像

$$\sigma: K(\alpha) \longrightarrow K(\beta)$$

で、 $\sigma(\alpha) = \beta$ をみたすものが存在する.

証明 定理 5.6 の後の注意より, $g(X) \in K[X]$ を $g(\alpha)$ または $g(\beta)$ に写すことで定まる 準同型写像

$$K[X] \longrightarrow K(\alpha), \qquad K[X] \longrightarrow K(\beta)$$

は、同型写像

$$\tau: K[X]/(f(X)) \longrightarrow K(\alpha), \qquad \rho: K[X]/(f(X)) \longrightarrow K(\beta)$$

をそれぞれ引き起こす. このとき, $\sigma = \rho \circ \tau^{-1}$ が求める同型写像となる.

例 5.11 X^2+1 のひとつの根を i とすれば、もうひとつの根は -i である. このとき、 $C=\mathbf{R}(i)$ から自分自身への写像

$$C \longrightarrow C$$
, $a + bi \mapsto a - bi$ (ただし $a, b \in R$)

が R 上の同型写像になっている. この写像は、ふつう複素共役写像とよばれる.

例 5.12 X^3-2 は \mathbf{Q} 上既約であり、その実根を $\alpha=\sqrt[3]{2}$ とすると、他の根は $\alpha\omega$ 、 $\alpha\omega^2$ ($\omega=e^{2\pi i/3}$ は 1 の原始 3 乗根)である. このとき、3 つの体 $\mathbf{Q}(\alpha)$ 、 $\mathbf{Q}(\alpha\omega)$ 、 $\mathbf{Q}(\alpha\omega^2)$ は互いに同型である. $\mathbf{Q}(\alpha)$ は実数体の部分体であり、 $\mathbf{Q}(\alpha\omega)$ と $\mathbf{Q}(\alpha\omega^2)$ は実数体には含まれていないが、これら 3 つの体は代数的には同等の性質をもっていると言える.