§4. 代数拡大

定義 4.1 L/K を体の拡大とする. L の任意の元が K 上代数的であるとき, L は K 上代数的であるという. また, L/K を代数拡大という. L が K 上代数的でないとき, L は K 上超越的であるといい, L/K を超越拡大という.

命題 4.2 有限次拡大は代数拡大である.

証明 L/K を有限次拡大とする. いま, $\alpha \in L$ を任意にとると, $K(\alpha)$ は L/K の中間体だから,定理 2.9 より $K(\alpha)/K$ も有限次拡大である. よって定理 3.7 によって, α は K 上代数的である. すなわち L の任意の元が K 上代数的あることが示されたから,L/K は代数拡大である.

命題 4.3 体の拡大 L/K に対して次は同値である.

- (i) L/K は有限次拡大である.
- (ii) K 上代数的な有限個の元 $\alpha_1, \dots, \alpha_n \in L$ が存在して, $L = K(\alpha_1, \dots, \alpha_n)$ が成り立つ.

証明 (i) のとき、ベクトル空間としての L の K 上の基底 $\alpha_1, \dots, \alpha_n$ をとれば、前命題 よりこれらはすべて K 上代数的であり、(ii) が導かれる. 逆に、(ii) のときは、

$$K_0 = K$$
, $K_1 = K_0(\alpha_1)$, $K_2 = K_1(\alpha_2)$, ..., $K_n = K_{n-1}(\alpha_n)$

とおけば,各 $i=1,\ldots,n$ について, α_i は K_{i-1} 上代数的だから,定理 3.7 より K_i/K_{i-1} は有限次,したがって,定理 2.9 から, $L=K_n$ は K 上有限次であることが導かれ,(i) を得る.

定理 4.4 M を体の拡大 L/K の中間体とするとき,次は同値である.

- (i) L/K は代数拡大である.
- (ii) L/M, M/K はともに代数拡大である.

証明 (i) ならば (ii) が成り立つのはあきらかなので、以下、(ii) を仮定して (i) を導く. そのためには、任意の $\alpha \in L$ が K 上代数的であることを確かめればよい. (ii) より L/M は代数的だから、 α は M 上代数的、したがって、 α を根とする M 上の零でない多項式

$$g(X) = c_0 + c_1 X + \dots + c_n X^n \qquad (c_i \in M)$$

が存在する. いま, $M_0=K(c_0,c_1,\ldots,c_n)$ とおくと, α は M_0 上代数的であるから,定理 3.7 より $M_0(\alpha)/M_0$ は有限次である. 一方,仮定 (ii) より M/K も代数的なので c_i は K 上代数的,よって,前命題より M_0/K は有限次である. したがって,定理 2.9 から, $M_0(\alpha)/K$ は有限次拡大であり,さらに命題 4.2 から代数拡大でもある. とくに α は K 上代数的である.

例 4.5 自然数 n に対して, $X^n - 1 = 0$ の根である複素数全体を W_n とする;

$$W_n = \{ z \in \mathbf{C} \mid z^n = 1 \}.$$

いま,

$$\zeta_n = e^{\frac{2\pi\sqrt{-1}}{n}} = \cos\frac{2\pi}{n} + \sqrt{-1}\sin\frac{2\pi}{n}$$

とおけば、 $W_n = \{\zeta_n^j | j = 0, 1, \dots, n-1\}$ と具体的にかけ、これが $X^n - 1$ の根全体の集合と一致する. よって、命題 4.3 より $\mathbf{Q}(W_n)/\mathbf{Q}$ は有限次、したがって、命題 4.2 より代数拡大である(実際には、 $\mathbf{Q}(W_n) = \mathbf{Q}(\zeta_n)$ が成り立っているので、命題 4.3 は必要とせず、定理 3.7 を使えばよい). とくに n が素数 p の場合、 ζ_p は $X^p - 1$ の既約因子 $X^{p-1} + X^{p-2} + \dots + X + 1$ の根だから、定理 3.8 より、

$$[Q(W_p): Q] = [Q(\zeta_p): Q] = p - 1.$$

この等式は、任意の自然数 n に対して、オイラー関数 φ を用いた等式

$$[\mathbf{Q}(W_n):\mathbf{Q}]=[\mathbf{Q}(\zeta_n):\mathbf{Q}]=\varphi(n)$$

に拡張されるが、証明は少し難しい.

補題 4.6 L/K を体の拡大とし、 $A \subset L$ とすると、K(A) は A の有限部分集合 B のすべてを走らせることにより

$$K(A) = \bigcup_{B} K(B)$$

と表される. すなわち, 任意の $\alpha \in K(A)$ に対して, $\alpha \in K(\beta_1, \dots, \beta_n)$ であるような有限個の $\beta_1, \dots, \beta_n \in A$ がとれる.

証明 $M = \bigcup_B K(B)$ とおく. このとき, $M \subset K(A)$ は直ちにわかる. 一方,あきらかに $K \subset M$ であり,また $A \subset M$ もすぐにわかるから,M が体であれば $K(A) \subset M$,したがって補題を得る. 以下,M が体であることを確かめる. M の任意の元 $\beta, \gamma \neq 0$ に対して, $\beta \in K(B)$, $\gamma \in K(C)$ をみたす A の有限部分集合 B,C がとれる. $D = B \cup C$ とおけば,D も A の有限部分集合であって $\beta, \gamma \in K(D)$ であるが,K(D) は体なので, β, γ の和,差,積,商は K(D) に属する. さらに $K(D) \subset M$ なので,これらは M に属する. よって,M は体である.

定理 4.7 L/K を体の拡大とし、 $A \subset L$ とする. A の任意の元が K 上代数的ならば K(A)/K は代数拡大である.

証明 任意の $\alpha \in K(A)$ に対して、前補題から、 $\alpha \in K(\beta_1, \dots, \beta_n)$ をみたす $\beta_i \in A$ が とれる. 仮定より β_i は K 上代数的だから、拡大 $K(\beta_1, \dots, \beta_n)/K$ は、命題 4.3 より有限次、よって命題 4.2 より代数的、とくに α は K 上代数的である.

系 4.8 L/K を体の拡大とする. $\alpha, \beta \in L$ $(\beta \neq 0)$ がともに K 上代数的ならば,それらの和と差 $\alpha \pm \beta$,積 $\alpha\beta$,商 α/β はどれも K 上代数的である.

証明 前定理より $K(\alpha,\beta)$ は K 上代数的であり, $\alpha \pm \beta, \alpha\beta, \alpha/\beta \in K(\alpha,\beta)$ だから結論を得る.

例 4.9 複素数平面における単位円を S とする. また, ある自然数 n に対して, $z^n=1$ をみたす複素数全体を W で表す.

$$S = \{ z \in \mathbf{C} \mid |z| = 1 \} = \{ x + iy \in \mathbf{C} \mid x, y \in \mathbf{R}, \ x^2 + y^2 = 1 \},$$

$$W = \{ z \in \mathbf{C} \mid \exists n \in \mathbf{N} \text{ s.t. } z^n = 1 \} = \bigcup_{n=1}^{\infty} W_n.$$

すべての $n \in \mathbb{N}$ について, $\mathbf{Q}(W_n) \subset \mathbf{Q}(W) \subset \mathbf{Q}(S)$. ここで, 以下が成り立つ.

- (1) Q(W)/Q は有限次ではない代数拡大である.
- (2) Q(S)/Q は超越拡大である.
- (1) は,定理 4.7 および例 4.5 から容易に証明できる. (2) の証明法はいくつかあるが,どれも簡単ではない.

命題 4.10 L/K を体の拡大とし,M をその中間体とする. $\alpha \in L$ が K 上代数 的であるとき,

$$[M(\alpha):M] < [K(\alpha):K]$$

が成り立つ.

証明 α の K 上の最小多項式を f(X) とすると, $\deg f = [K(\alpha):K]$. 一方,f(X) は M 上の多項式でもあるから,補題 3.5 より, $[M(\alpha):M] \leq \deg f$ であり,求める不等式を得る.

例 4.11 X^3-1 の 1 でない根のひとつを ω とする(1 の原始 3 乗根). このとき, ω , ω^2 は X^2+X+1 の 2 根である. X^3-2 の実根を α とすれば,他の根は $\alpha\omega$, $\alpha\omega^2$ で与えられる. X^3-2 は \mathbf{Q} 上既約だから,定理 3.8 より $\mathbf{Q}(\alpha)/\mathbf{Q}$ は 3 次拡大である. このとき,

- (a) $M = \mathbf{Q}(\omega)$ とおけば、 $[M(\alpha): M] = 3 = [\mathbf{Q}(\alpha): \mathbf{Q}]$ 、
- (b) $L = \mathbf{Q}(\alpha \omega)$ とおけば、 $[L(\alpha) : L] = 2 < 3 = [\mathbf{Q}(\alpha) : \mathbf{Q}]$

が成り立ち, それぞれ, 前命題において, 等号が成り立つ例, 成り立たない例となっている.

定義 4.12 Ω/K を体の拡大とし,L,M をその中間体とするとき,L,M をともに含む Ω の最小の部分体を L,M の合成体といい LM で表す. すなわち,LM=L(M)=M(L) である.

定理 4.13 L,M が体の拡大 Ω/K の中間体で、L/K が有限次拡大ならば

$$[LM:M] \leq [L:K]$$

が成り立つ.

証明 命題 4.3 より, $L = K(\alpha_1, ..., \alpha_n)$ をみたす K 上代数的な元 α_i がとれる.

$$K_0 = K$$
, $K_1 = K_0(\alpha_1)$, $K_2 = K_1(\alpha_2)$, ..., $K_n = K_{n-1}(\alpha_n)$
 $M_0 = M$, $M_1 = M_0(\alpha_1)$, $M_2 = M_1(\alpha_2)$, ..., $M_n = M_{n-1}(\alpha_n)$

とおくと,命題 4.10 より $[M_i:M_{i-1}] \leq [K_i:K_{i-1}]$. さらに, $L=K_n$ かつ $LM=M_n$ だから,定理 2.9 を何度か適用して

$$[LM:M]=[M_n:M_{n-1}]\cdots[M_1:M_0]\leq [K_n:K_{n-1}]\cdots[K_1:K_0]=[L:K]$$
が導かれる.