代数 I 期末試験問題 July 24, 2024 (中野 伸)

- 解答は、結論だけでなく、必要に応じて結論に至る考え方 も簡潔に書くこと.
- [1] A を乗法群 $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ の部分群で $\{2,3\}$ によって生成されるものとする. 以下の問いに答えよ.
 - (1) 以下の有理数を、Aに属するものと属さないものに分類せよ.

$$-1, \quad -\frac{8}{9}, \quad \frac{1}{6}, \quad \frac{136}{160}, \quad 1, \quad \frac{441}{7}, \quad 108, \quad 2024$$

- (2) 加法群 \mathbb{Z} ふたつの直積群 $\mathbb{Z} \times \mathbb{Z}$ から \mathbb{Q}^* への写像 $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}^*$ を $f(m,n)=2^m3^n$ で定める. f に群の準同型定理を適用して,A と $\mathbb{Z} \times \mathbb{Z}$ が同型であることを示せ.
- [2] 以下のそれぞれの命題について,正しい場合はその証明を,正しくない場合はその理由を説明せよ.
 - (1) \mathbb{R} の部分環 $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\right\}$ において、イデアル $(5+\sqrt{2})$ は $3+5\sqrt{2}$ を含む.
 - (2) R を単項イデアル整域 (PID) とする. p が R の既約元ならば、イデアル (p) は R の極大イデアルである.
- [3] \mathbb{C} の部分環 $\mathbb{Z}\left[\sqrt{-3}\right] = \left\{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\right\}$ から $\mathbb{Z}/7\mathbb{Z}$ への写像 $f: \mathbb{Z}\left[\sqrt{-3}\right] \to \mathbb{Z}/7\mathbb{Z}$ を $f(a + b\sqrt{-3}) = \overline{a 2b}$ と定める.
 - (1) ƒ は環準同型写像であることを確かめよ.
 - (2) $\operatorname{Ker}(f) \subset (2+\sqrt{-3})$ であることを示せ.
 - (3) $2+\sqrt{-3}$ は $\mathbb{Z}\left[\sqrt{-3}\right]$ の素元であることを示せ.
- [4] \mathbb{Z} 上の多項式 $g(X) = 3X^4 6X^2 + 4X 1$ について、以下の問に答えよ.
 - (1) g(X) は $\mathbb{Z}[X]$ の既約元ではないことを示せ.
 - (2) g(X) を $\mathbb{Q}[X]$ の元とみなすとき, $\mathbb{Q}[X]$ の極大イデアル M で $g(X) \in M$ をみたすものをひとつ求めよ.
 - (3) g(X) + 2 は $\mathbb{Z}[X]$ における既約多項式であることを示せ.