Hyperbolic equations with non analytic coefficients well posed in all Gevrey classes

Tamotu Kinoshita and Sergio Spagnolo

In this talk, we consider weakly hyperbolic equations. For the second order equation $\partial_{\mathrm{t}}^{2} u=a_{2}(t) \partial_{\mathrm{x}}^{2} u+a_{1}(t) \partial_{\mathrm{x}} \partial_{\mathrm{t}} u$ with $a_{2}(t) \in C^{\mathrm{k}}$ (resp. C^{∞}, resp. $\left.\mathcal{A}\right)$ and $a_{1}(t) \equiv 0$ under a hyperbolic condition $a_{2}(t) \geq 0$, [CJS] showed the wellposedness in γ^{5} for $1 \leq s<1+k / 2$ (resp. in γ^{∞}, resp. in C^{∞}). For the third order equation

$$
\begin{aligned}
& \partial_{\mathrm{t}}^{3} u=\left\{a_{3}(t) \partial_{\mathrm{x}}^{3}+a_{2}(t) \partial_{\mathrm{x}}^{2} \partial_{\mathrm{t}}+a_{1}(t) \partial_{\mathrm{x}} \partial_{\mathrm{t}}^{2}\right\} u, \\
& \partial_{\mathrm{t}}^{\mathrm{h}} u(0, x)=u_{\mathrm{h}}(x) \quad(0 \leq h \leq 2),
\end{aligned}
$$

we need some additional conditions to get similar kind of results.

1. By $[\mathrm{K}]$ we get the wellposedness in γ^{∞} of (P) with $a_{1}(t), a_{2}(t) \in C^{\infty}$ and $a_{3}(t) \equiv 0$ under a hyperbolic condition $a_{2}(t) \geq 0$.
2. By [S] we get the wellposedness in γ^{∞} of (P) with $a_{2}(t), a_{3}(t) \in C^{\infty}$ and $a_{1}(t) \equiv 0$ under a hyperbolic condition $4 a_{2}(t)^{3}-27 a_{3}(t)^{2} \geq{ }^{\exists} c a_{3}(t)^{2}$.
3. By [CO] we get the wellposedness in γ^{∞} of (P) with $a_{1}(t), a_{3}(t) \in C^{\infty}$ and $a_{2}(t) \equiv 0$ under a condition

$$
\lambda_{\mathrm{i}}^{2}(t)+\lambda_{\mathrm{j}}^{2}(t) \leq{ }^{\exists} M^{\mathbf{i}} \lambda_{\mathrm{i}}(t)-\lambda_{\mathrm{j}}(t)^{\boldsymbol{q}_{2}}, \quad 1 \leq i<j \leq 3 .
$$

We denote that

$$
\begin{aligned}
\Delta(t) & ={ }_{1 \leq i<\mathrm{j} \leq 3}^{\mathbf{Y}} \lambda_{\mathrm{j}}(t)-\lambda_{\mathbf{i}}(t)^{\boldsymbol{\phi}_{2}} \\
& =4 a_{2}(t)^{3}-27 a_{3}(t)^{2}+a_{1}(t)^{2} a_{2}(t)^{2}-4 a_{1}(t)^{3} a_{3}(t)-18 a_{1}(t) a_{2}(t) a_{3}(t) .
\end{aligned}
$$

When the roots are distict, there exists $c>0$ such that

$$
\Delta(t) \geq c
$$

Remark 1. If the condition in [CO] is satisfied, it follows that

$$
\Delta(t) \geq \frac{\left(\lambda_{1}(t)^{2}+\lambda_{2}(t)^{2}\right)\left(\lambda_{2}(t)^{2}+\lambda_{3}(t)^{2}\right)\left(\lambda_{3}(t)^{2}+\lambda_{1}(t)^{2}\right)}{M} .
$$

Then we get the following:
Theorem : If the coefficients are C^{k} (resp. C^{∞}, resp. analytic) and satisfy

$$
\mathbf{i}_{9 a_{3}(t)+a_{1}(t) a_{2}(t)^{\boldsymbol{\phi}_{2}} \leq{ }^{\exists} M \Delta(t), ~}^{\text {a }}
$$

then the Cauchy problem (P) is well-posed in γ^{s} for

$$
1 \leq s<1+\frac{k}{4}
$$

(resp. in γ^{∞}, resp. in C^{∞}).
Remark 2. For the simplicity we suppose that the spacial dimension $n=1$.
Remark 3. In case when the m-th order equation whose coefficients belong to C^{k} for $k>3(m+n+2),[\mathrm{B}]$ proved the wellposedness in γ^{s} of (P) for

$$
1 \leq s<1+\frac{1}{m-1}
$$

For the proof, we shall improve the theory of quasi-symmetrizers (see [DS]).

R eferences

[B] M.D. Bronštein, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moskov. Mat. Obs̆c̆. 41 (1980), 87-103 (Trans. Moscow Math. Soc., 1 (1982), 87-103).
[CJS] F. Colombini, E. Jannelli and S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm Sup. Pisa, 10 (1983), 291-312.
[CO] F. Colombini and N. Orrú, Well posedness in C^{∞} for some weakly hyperbolic equations, J. Math. Kyoto. Univ., 39 (1999), 399-420.
[DS] P. D'Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. Ital., 1-B (1998), 169-185.
[K] T. Kinoshita, Gevrey wellposedness of the Cauchy problem for the hyperbolic equations of third order with coefficients depending only on time, Publ. RIMS Kyoto Univ., 34 (1998), 249-270.
[S] S. Spagnolo, Hyperbolic systems well posed in all Gevrey classes, preprint.

