学習院大学理学部数学科

ステップ・バイ・ステップ式 はじめての Maple 応用編

数学講話1

▼<u>やっぱり微積分</u>

数列と和

極限

微分法

連続微分

級数展開

積分法

積分の応用

線の積分

回転面の面積

2重積分の計算

▼<u>いわゆる線形代数</u>

行列の演算

行列の定義

行列の演算

行列の操作

ベクトル

ベクトルの定義

ベクトルの操作

足し算

ベクトルの角度

内積(スカラー積)と外積(ベクトル積)

ノルム(ベクトルの大きさ)

固有値と固有ベクトル

固有値の計算

固有ベクトルの計算

1次変換(線形写像)のプロット

連立1次方程式の解法

▼<u>微分方程式に挑む!</u>

数学モデルの作り方

常微分方程式の定義と解析解

少しだけ常微分方程式のこと

1 階常微分方程式

(例1)
$$\frac{d}{dx} y(x) = (1 - y(x)^2) \tan(x)$$

(例2) $x \left(\frac{d}{dx} y(x)\right) = y(x) + \sqrt{x^2 + y(x)^2}$
(例3) $\frac{d}{dx} y(x) + 2 y(x) \tan(x) = \sin(x)$

2 階常微分方程式の解

1 自由度粘性減衰振動系の解

指数関数の特性

a) ともに正の場合

b) 正と負の場合

c) ともに負の場合

2) 異なる2つの虚根を持つ場合

d) 実部が正の場合

e) 実部が負の場合

少しだけ考察

2 階常微分方程式の行列表現

連立微分方程式の解法

初期値問題

ラプラス変換による初期値問題の解法

2 階常微分方程式の数値解法

▼ <u>プログラミング前夜</u>

処理の再利用

プロシージャ化(処理を1行で記述可能な場合)

プロシージャ化(処理を複数行で記述する場合)

グローバル変数とローカル変数

(例) グローバル変数とローカル変数の違い

引数の型・変数の型

制御構文

条件分岐(if-then-else-end if)

数字の大小を判別する条件分岐

条件分岐を含むプロシージャの作成手順

(参考) 引数を比較するプロシージャに変更

繰り返し(for-do-end do)

足し算の実行

繰り返し文の前に

繰り返し文の利用

プロシージャへの拡張

(参考)sum コマンドを用いて実行します

(参考)2つのインデックス操作

それは振動しますか?

Maple による2階常微分方程式の解法と解のプロット

「それは振動しますか?」プロシージャの作成手順

2階常微分方程式の解法をプロシージャ化

プロシージャのパラメータ化

固有値の計算

固有値の実部・虚部抽出

実部の符号と条件分岐

虚部の符号と条件分岐

固有値のプロット

ステップ・バイ・ステップ式 はじめての Maple 応用編

やっぱり微積分

微積分に関する操作手順を習得します.

目次

- 数列と和
- ●極限
- 微分法
- 級数展開
- 積分法
- •積分の応用

数列と和	
初期化します.	
> restart;	
第n項が与えられている数列	
> srn := $(1-n^3)/(3*n+1)$; srn := $\frac{1-n^3}{3n+1}$	(1.1)
数列の作成(seq コマンドの利用)	
> seq(srn, n=010); 1, 0, -1, $-\frac{13}{5}$, $-\frac{63}{13}$, $-\frac{31}{4}$, $-\frac{215}{19}$, $-\frac{171}{11}$, $-\frac{511}{25}$, -2	26, $-\frac{999}{31}$ (1.2)
n=010 の和	
<pre>> sum(srn, 'n'=010);</pre>	(1.3)
(有限範囲での)プロット	

> plot(srn, n=0..10);

「新会会会」
「初期化します.
> restart;
xの関数としてfを定義します.
> f := sin(a*x)/cos(a*x);
f :=
$$\frac{sin(a x)}{cos(a x)}$$
 (3.1)
開数 f & x τ 1 開微分します.
> df := a + $\frac{sin(a x)^2 a}{cos(a x)^2}$ (3.2)
結果を簡単な形に整理します.
> simplify(df);
 $\frac{a}{cos(a x)^2}$ (3.3)
三角関数 sin(a x) を定義し, x τ 2 開微分します.
> f2 := sin(a*x);
> diff(f2, x, x);
 $-sin(a x) a^2$ (3.5)
指定方法を一般化します (\$07HH).
> diff(f2, x\$2);
 $-sin(a x) a^2$ (3.6)
x σ n 開微分になります.
> diff(f2, x\$a);
 $sin\left(a x + \frac{n\pi}{2}\right) a^n$ (3.7)
2 変数関数 $(x + y)^4 \sigma$ 微分を確認します.
> p := $(x + y)^4$;

(**1** 0)

(3.8)

10 / 48

やっぱり微積分

 $y = \pm \sqrt{1 - x^2}$ をプロットしてみます. はじめに, 式を定義します. peq := sqrt(1-x²); neq := -sqrt(1-x²); $peq := \sqrt{1 - x^2}$ $neq := -\sqrt{1 - x^2}$ (3.9) それぞれの式をプロットします. オプション scaling=constrained は縦横被を1:1に設定します. > plot(peq, x=-1..1, scaling=constrained); 0.8 0.6 0.4 -0.2 -0.5 -1 0 0.5 1 х > plot(neq, x=-1..1, scaling=constrained);

やっぱり微積分

はじめての Maple

 級数展開

初期化します.

> restart;

級数は,数列の無限和になり,数列の和は1変数(xなど)の多項式になります.級数展開では,ある 無限回微分可能な関数(例えば, e^{ax}, sin(ax), cos(ax)など)が対象になります.足される項の数が 増えると,すなわち多項式の次数が上がると,級数展開される前の関数に近づいていきます(これを, 近似と呼びます.正確には,関数の多項式近似になります).近似は,形や値がよく似ているだけで, 必ず真の形や値との間に差が生じます(これを,誤差と呼びます).ただし,関数を多項式に近似する ことで,その後の解析がとても容易になります.

関数 sin(x) を, x=0 で(多項式の)次数を 5 として級数展開します.

• ser1 := sin(x) = series(sin(x), x=0, 5);
ser1 := sin(x) =
$$x - \frac{1}{6}x^3 + O(x^5)$$
(4.1)

O(x^5)を剰余項と呼びます.多項式近似において,誤差の項を意味します.

(参考) $O(x^5) = \sin(x) - \left(x - \frac{1}{6}x^3\right)$

展開前の関数と展開後の級数をプロットします. Ihs コマンドは式の左辺を抽出し, rhs コマンドは式の 右辺を抽出します.

> lhs(ser1);
 rhs(ser1);

$$\frac{\sin(x)}{x - \frac{1}{6}x^3 + O(x^5)}$$
(4.2)

> plot([lhs(ser1), rhs(ser1)], view = [-Pi..Pi, -1.2..1.2], numpoints= 300); Warning, unable to evaluate 1 of the 2 functions to numeric values in

the region; see the plotting command's help page to ensure the calling sequence is correct

展開後の級数がプロットされません.これは.剰余項が数値でないためにプロットできないためです. ここで,級数を純粋な多項式に変換します.すなわち,剰余項を打ち切ります.このとき発生する誤差 を打切り誤差といいます.

> pol1 := convert(rhs(ser1), polynom);

$$poll := x - \frac{1}{6} x^3$$
 (4.3)

剰余項 $O(x^5)$ がなくなります(打ち切られます). 再度, 展開前の関数と展開後, 級数から多項式に 変換した式をプロットします.

> plot([lhs(ser1), pol1], view = [-Pi..Pi, -1.2..1.2], numpoints=300);

やっぱり微積分

はじめての Maple

(復習)

PLOT(...) は、プロットコマンド(plot や plot3d)から作成される描画イメージを記述したデータで す. PLOT(...) をプロットする場合、plots パッケージの display コマンドを使用します.また、 display コマンドに複数の PLOT(...) を渡す場合リストにする必要があります.[]で複数の PLOT(...) を括ると、リストになります.

display コマンドを用いてアニメーションを作成します. plots パッケージをロードします.

> with(plots):

insequence = true を指定すると,

 $plt2 \coloneqq [PLOT(...), PLOT(...), PLOT(...)]$

の順番でプロットイメージをアニメーションに変換します.

> display(plt2, insequence = true);

アニメーションの操作は,以下の操作パネルから行うことができます. 操作パネルは,プロットされたグラフをクリックするとツールバーの下に表示されます.
テキスト Math 描画 ブロット アニメーション
F
次数を 6 にします.
> K := 6;
$K := 6 \tag{4.18}$
$ v_{-1} v_{-1} \tau_{-1} \tau_{-1} v_{-1} \tau_{-1} \tau_{-1} $
$K = 1K \subset U \subset U \cup V = V \simeq 1 F M \cup U \sqcup U \sqcup U = V \simeq 1 F M \cup U \sqcup U = V \simeq 1 F M \cup U \sqcup U = V \simeq 1 F M \cup U = V = V \simeq 1 F M \cup U = V = V = V = V = V = V = V = V = V =$
<pre>> plt2 := [seq(plot([f, convert(series(f, x=p, k), polynom)], view = [-Pi Pi -2 2] numpoints=300) k=1 K) l;</pre>
plt2 := [PLOT(), PLOT(), PLOT(), PLOT(), PLOT(), PLOT()] (4.19)
display $\exists \forall \mathcal{I} \land $
<pre>> display(plt2,insequence=true);</pre>

xmax := 3π

(5 8)

> f3 := x/(x^2+x-2);

(5.18)

やっぱり微積分

はじめての Maple

$$f_{3} := \frac{x}{x^{2} + x - 2}$$
(5.18)
> int(f_{3}, x); $\frac{\ln(x-1)}{3} + \frac{2\ln(x+2)}{3}$ (5.19)
(\$\$\$) 部分分数に変換後,積分を実行します.
> f_{3}a := convert(f_{3}, parfrac);
f_{3}a := \frac{2}{3(x+2)} + \frac{1}{3(x-1)}(5.20)
> int(f_{3}a, x); $\frac{\ln(x-1)}{3} + \frac{2\ln(x+2)}{3}$ (5.21)
定積分
> restart;
定積分の記述は以下のように,積分範囲を指定します.
> int(f(x), x=a..b); $\int_{a}^{b} f(x) dx$ (5.22)
1 の定積分になります.
> int(1, x=1..3); 2 (5.23)
指数関数の定積分になります.
> int(exp(x), x=0..2); -1 + e^{2}(5.24)

積分の応用
「初期化します.
> restart;
(曲線の長さ)
関数
$$y = f(x)$$
 は区間 $[a, b]$ で連続とする. このときの曲線の長さ L は
 $L = \int_{a}^{b} \sqrt{1 + (f(x))^{2}} dx$
てある.
「直線 $y = x$ (0 $\le x \le 1$) の長さ L
> $y1 := x;$ $yl := x$ (61.1)
y1 を確認します (プロットします).
> plot(y1, x=0..1);

次に, 曲線 $y = x\sqrt{x}$ (0 $\le x \le 1$)の長さ L. > y2 := x*sqrt(x); $y2 := x^{3/2}$ (6.1.5) y2 をプロットします. plot(y2, x=0..1); $0.8 \cdot$ 0.6 -0.4 -0.2 0 +0.2 0.4 0.8 0.6 0 1 х $\sqrt{1 + \{f(x)\}^2}$ を iy2 として 計算します. > iy2 := sqrt(1 + (diff(y2, x))^2); $iy2 := \frac{\sqrt{4+9x}}{2}$ (6.1.6) 最後に $L = \int_{a}^{b} \sqrt{1 + \{f(x)\}^2} \, dx$ を計算します. 範囲 x=a..b は x=0..1 になります. > L2 := int(iy2, x=0..1);

やっぱり微積分

はじめての Maple

S := (fx, a, b) -> 2*Pi*(int(fx * sqrt(1 + (diff(fx, x))^2),

やっぱり微積分

43 / 48

やっぱり微積分

ファンクション S を用いて,区間 [0, 1] として関数 y1 の回転面の面積を求めます. 結果を S1 に格納します. > S1 := S(y1, 0, 1); $SI := 2 \pi \left(\frac{5\sqrt{10}}{27} - \frac{1}{54} \right)$ (6.2.3) 式を S1 を簡単化します. > simplify(S1); $\frac{\pi \left(10 \sqrt{10}-1\right)}{27}$ (6.2.4)(例2) $y = 2\sqrt{x} \quad (0 \le x \le 1)$ > y2 := 2*sqrt(x); $y2 := 2\sqrt{x}$ (6.2.5)ファンクション S を用いて,区間 [0, 1] として関数 y2 の回転面の面積を求めます. 結果を S2 に格納します. > s2 := S(y2, 0, 1); $S2 := 2 \pi \left(-\frac{4}{3} + \frac{8\sqrt{2}}{3} \right)$ (6.2.6)式を S2 を簡単化します. > simplify(S2); $\frac{8\pi\left(-1+2\sqrt{2}\right)}{3}$ (6.2.7)半径 r の球の表面積 S 半円 $y = \sqrt{r^2 - x^2} (-r \le x \le r)$ を x 軸のまわりに回転させると球になります. 式を y3 として, 定義します. > y3 := sqrt(r² - x²); $y3 := \sqrt{r^2 - x^2}$ (6.2.8) 式 y3を r=1 としてプロットします.

44 / 48

L

やっぱり微積分

$$S3b := 4\pi$$
(6.2.12)
2 重積分の計算
 $\exists m, U \cup \sharp \overline{\tau}$.
> restart;
 $(2 \equiv \bar{\eta}, \gamma) \oplus D : a \le x \le b, c \le y \le d \Box \exists t \exists t \exists 2 \equiv \bar{\eta} \oplus dt$,
 $\iint_{D} f(x, y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} b(x, y) dy dx$
 $2 \equiv \bar{\eta} \oplus \iint_{D} (x^{2} - y) dx dy \quad (D: 0 \le x \le 1, 1 \le y \le 2) \oplus \bar{\theta} \oplus \bar{\theta}$

ステップ・バイ・ステップ式 はじめての Maple 応用編

いわゆる線形代数

線形代数に関する操作手順を習得します.

目次

- 行列の演算
- ベクトル
- 固有値と固有ベクトル
- •1次変換(線形写像)のプロット
- 連立1次方程式の解法

行列の演算

初期化します.

> restart;

はじめに線形代数(LinearAlgebra)パッケージをロードします.

> with(LinearAlgebra);

[&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, (1.1) BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]

<u>行列の定義</u>

行列 $(r \times c)$ のサイズのみで,要素が行列に与えられない場合,すべての値は 0 (デフォルト値) で埋め尽くされます.

> M22 := Matrix(2, 2);

$$M22 := \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
(1.1.1)

はじめての Maple

> M33 := Matrix(3, 3); $M33 := \left| \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right|$ (1.1.2)• M23 := Matrix(2, 3); $M23 := \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$ (1.1.3)(参考)零行列を明示的に定義する場合は、ZeroMtrix コマンドを使用します. > Z33 := ZeroMatrix(3, 3); $Z33 := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (1.1.4)要素(5)を指定した場合、すべての値がその要素で埋め尽くされます. > M33a := Matrix(3,3, 5); $M33a := \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}$ (1.1.5)各要素を指定する場合、以下のような定義方法があります. 行列の大きさを宣言し、要素をリストと してコマンドに与えます. > M33b := Matrix(3,3, [a,b,c,d,e,f,g,h,i]); $M33b \coloneqq \begin{bmatrix} a & b & c \\ d & e & f \\ a & b & \vdots \end{bmatrix}$ (1.1.6)変数(記号)で要素を定義する場合,以下のような定義方法があります. > M33c := Matrix(3,3, symbol=a); $M33c := \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$ (1.1.7)| < > を用いた行列の定義方法があります. M33d := < <1,2,3> | <4,5,6> | <7,8,9> >;

はじめての Maple

 $M33d := \left| \begin{array}{rrrr} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{array} \right|$ (1.1.8)単位行列の定義は IdentityMatrix を使用します. > E33 := IdentityMatrix(3); $E33 := \left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right|$ (1.1.9)対角行列の定義は Diagonal Matrix を使用します. > D33 := DiagonalMatrix([a,b,c]); $D33 := \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ (1.1.10)ランダムに行列の要素を定義するコマンド RandomMatrix があります。要素は実行するたびに異な ります. > M33e := RandomMatrix(3,3); $M33e := \begin{bmatrix} 27 & 99 & 92 \\ 8 & 29 & -31 \\ 69 & 44 & 67 \end{bmatrix}$ (1.1.11)多項式や関数などの式を要素として、行列を定義することができます. > M22f := Matrix(2,2, [sin(a*x), cos(b*x), exp(c*x), f(x)]); $M22f := \begin{bmatrix} \sin(ax) & \cos(bx) \\ e^{cx} & f(x) \end{bmatrix}$ (1.1.12)(参考) 全要素に diff コマンドを適用します(x について全要素を2階微分). > map(diff, M22f, x); $\begin{bmatrix} \cos(a x) a & -\sin(b x) b \\ c e^{cx} & f'(x) \end{bmatrix}$ (1.1.13)(参考) 全要素に int コマンドを適用します(x について全要素を積分). map(int, M22f, x);

はじめての Maple

$$\begin{bmatrix} -\frac{\cos(ax)}{a} & \frac{\sin(bx)}{b} \\ \frac{e^{ax}}{c} & \int f(x) dx \end{bmatrix}$$
(1.1.14)

F7500 b
F7500 b
F7500 b
F7500 b
F7500 c
c
c
c c c
c
c c c c
c c c c c

$$\begin{array}{l} \left| \frac{1}{2} \right| \\ > \text{ A-B; } \\ \left[\begin{array}{c} a_{1,1} - b_{1,1} & a_{1,2} - b_{1,2} \\ a_{2,1} - b_{2,1} & a_{2,2} - b_{2,2} \end{array} \right] \\ (1.2.6) \\ \left| \frac{1}{2} \right| \\ \left$$

はじめての Maple

$$\begin{bmatrix} \frac{a_{2,2}}{a_{1,1}a_{2,2}-a_{1,2}a_{2,1}} & -\frac{a_{1,2}}{a_{1,1}a_{2,2}-a_{1,2}a_{2,1}} \\ -\frac{a_{2,1}}{a_{1,1}a_{2,2}-a_{1,2}a_{2,1}} & \frac{a_{1,1}}{a_{1,1}a_{2,2}-a_{1,2}a_{2,1}} \end{bmatrix}$$
(1.2.10)
(1.2.10)
(1.2.10)
(1.2.10)
(1.2.11)
(1.2.11)
(1.2.11)
(1.2.11)
(1.2.11)
(1.2.12)
(1.2.12)
(1.2.12)
(1.2.12)
(1.2.13)
(1.2.13)
(1.2.13)
(1.2.13)
(1.2.14)
(1.2.14)
max (Lab + [a] + [a] + [b] + [a] + [b] +

行列 N2 のノルムを計算します.

```
> MatrixNorm( N2, 1 );
                                                                                                                     (1.2.16)
                                                         18
   (参考)式 \max(|a| + |d| + |g|, |b| + |e| + |h|, |c| + |f| + |i|) に実際の値を代入して確認します.
  > \max(abs(1) + abs(-4) + abs(-7),
              abs(-2) + abs(-5) + abs(8),
              abs(3) + abs(6) + abs(-9));
                                                         18
                                                                                                                     (1.2.17)
行列の操作
 初期化します.
> restart;
 はじめに,線形代数パッケージをロードします.
> with(LinearAlgebra):
  (参考) コロン(:)で,結果を非表示にしています.
 行列 M の転置
  > M := Matrix(6,6, symbol=m);
                                        m_{1,1} m_{1,2} m_{1,3} m_{1,4} m_{1,5} m_{1,6}
                            M := \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,3} & m_{1,6} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} & m_{2,5} & m_{2,6} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} & m_{3,5} & m_{3,6} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} & m_{4,5} & m_{4,6} \\ m_{5,1} & m_{5,2} & m_{5,3} & m_{5,4} & m_{5,5} & m_{5,6} \\ m_{6,1} & m_{6,2} & m_{6,3} & m_{6,4} & m_{6,5} & m_{6,6} \end{bmatrix}
                                                                                                                      (1.3.1)
 転置は、Transpose コマンドを使用します.
 > Transpose(M);
                                                                                                                      (1.3.2)
                                                      8 / 30
```

はじめての Maple

·· - ·

$$\begin{bmatrix} m_{1,1} m_{2,1} m_{3,1} m_{4,1} m_{5,1} m_{6,1} \\ m_{1,2} m_{2,2} m_{3,2} m_{3,3} m_{5,3} m_{6,3} \\ m_{1,3} m_{2,3} m_{3,3} m_{4,3} m_{5,3} m_{6,3} \\ m_{1,4} m_{2,4} m_{3,4} m_{4,4} m_{5,4} m_{6,4} \\ m_{1,5} m_{2,5} m_{4,5} m_{5,5} m_{6,5} \\ m_{1,6} m_{2,6} m_{3,6} m_{4,6} m_{5,6} m_{6,6} \end{bmatrix}$$

$$A^{ST} \square_{c} \square_{c}$$

はじめての Maple

初期化します. restart; はじめに、線形代数パッケージをロードします. > with(LinearAlgebra): (参考) コロン(:) で, 結果を非表示にしています. ベクトルの定義 ベクトルのサイズのみで, 要素がベクトルに与えられない場合, すべての値は0 (デフォルト値) で埋め尽くされます.特に指定がなければ,列ベクトルが定義されます. > Vector(2); 0 0 (2.1.1)(参考)零ベクトルを明示的に定義する場合は、ZeroVector コマンドを使用します. ZeroVector(3); 0 0 (2.1.2)0 ベクトルのサイズを指定し,要素をすべて5で定義します. > Vector(1..3, 5); 5 5 5 (2.1.3)ベクトルの要素を(リストで)指定します. > Vector([1,2,3]); 1 2 (2.1.4)3

11 / 30

行ベクトルを定義します. Vector[row]([1,2,3]); (2.1.5)記号で要素を指定します. > Vector(3, symbol=v); v₂ (2.1.6)山括弧 < > を用いて、ベクトルを定義することもできます.また、カンマ(,)は要素を縦方向 に並べる働きがあり、バーティカルバー (|)は要素を横方向に並べる働きがあります. > vc := <1,2,3>; $vc := \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$ (2.1.7) > vr := <1|2|3>; $vr \coloneqq \left[\begin{array}{cc} 1 & 2 & 3 \end{array} \right]$ (2.1.8)ランダムにベクトルの要素を定義するコマンド RandomVector があります. 要素は実行するたびに異なります. > RandomVector(3); $\begin{bmatrix} 92\\ -31\\ 67 \end{bmatrix}$ (2.1.9) シーケンスの形で、基底ベクトルを定義します.シーケンスはカンマ(,) で区切られた Maple オブジェクトのひとつになります. > UnitVector(1,3), UnitVector(2,3), UnitVector(3,3); $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ (2.1.10)ベクトルの操作 列ベクトルを定義します.

> VectorAdd(p, q);

$$\begin{bmatrix} a_{1} + b_{1} \\ a_{2} + b_{2} \\ a_{3} + b_{3} \end{bmatrix}$$
(2.3.3)

COLONDE

$$\begin{bmatrix} \underline{a}_{1} + b_{1} \\ \underline{a}_{2} + b_{2} \\ a_{3} + b_{3} \end{bmatrix}$$
(2.3.3)
$$\begin{bmatrix} \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.3.3)
$$\begin{bmatrix} \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.3.3)
$$\begin{bmatrix} \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.4.1)
$$\begin{bmatrix} v_{3} := \sqrt{2} \\ \frac{1}{2} \end{bmatrix}$$
(2.4.1)
$$\frac{v_{3} := \sqrt{2} \\ v_{4} := \sqrt{2} \end{bmatrix}$$
(2.4.2)
(2.4.2)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.4.2)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.4.2)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.4.2)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.4.2)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.4.2)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{2} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{2} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{1} \\ \underline{c}_{2} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b_{3} \end{bmatrix}$$
(2.5.1)
$$\begin{bmatrix} \underline{c}_{2} \\ \underline{c}_{3} + b_{3} \\ \underline{c}_{3} + b$$

RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinates, SpaceCurve, SpaceCurveTutor, SurfaceInt, TNBFrame, Tangent, TangentLine, TangentPlane,

TangentVector, Torsion, Vector, VectorField, VectorFieldTutor, VectorPotential, VectorSpace, diff, evalVF, int, limit, series]

2つの(3次元)ベクトル v1, v2 を定義します. e_x, e_y, e_z は、それぞれ3次元の直交座標系(デカルト座標系)の単位ベクトルを表します. (参考) $e_x, e_y, e_z = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ > v1 := Vector([1, 2, 1]); $vI := e_x + 2e_y + e_z$ (2.5.2)v2 := Vector([-3, 1, -2]); v2 := $-3e_x + e_y - 2e_z$ (2.5.3)ベクトルをプロットします. PlotVector([v1,v2], color=[red, blue], axes=boxed, scaling= constrained); 1 0 3 1 2 0 1 0.5 0 1 1.5 2 ベクトル v1 と v2 の内積(スカラー積)を DotProduct コマンドを用いて計算します.

ベクトル v の 1 - ノルム		
> Norm(v, 1);	a + b	(2.6.2)
ベクトル v の 2-ノルム		
> Norm(v, 2);	$\sqrt{\left a\right ^2 + \left b\right ^2}$	(2.6.3)
ベクトル v の 3-ノルム		
> Norm(v, 3);	$(a ^3 + b ^3)^{1/3}$	(2.6.4)
ベクトル v の 3/2-ノルム		
> Norm(v, 3/2);	$(a ^{3/2} + b ^{3/2})^{2/3}$	(2.6.5)
│ ベクトル v の 無限大-ノルム		
<pre>> Norm(v, infinity);</pre>	$\max(a , b)$	(2.6.6)

行列式を求める Determinant コマンドを使用します. ceq := Determinant(M) = 0; $ceq := (-2 + \lambda) (5 + \lambda) = 0$ (3.1.5)固有方程式(特性方程式) $ceq := (-2 + \lambda) (5 + \lambda) = 0$ の解を求めます. R := solve(ceq, lambda); $R \coloneqq 2, -5$ (3.1.6) $r := \begin{vmatrix} 2 \\ -5 \end{vmatrix}$ と同じように固有値が導かれます. (参考) 固有値方程式と特性方程式は同じものです.特性方程式として解を求めた場合,導かれた根 を特性根と呼びます. 固有ベクトルの計算 はじめに定義した 2×2の行列 A について、その固有値と固有ベクトルを計算します. Eigenvalues コマンドは、固有値と固有ベクトルを同時に計算します. そこで、2つの変数 e, v を用意して、 > (e, v) := Eigenvectors(A); $e, v := \begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ (3.2.1)2つの固有値をそれぞれ別々の変数 e1, e2 に割り当てます. > e1 := e[1]; e2 := e[2]; $e1 \coloneqq 2$ $e^2 := -5$ (3.2.2)2つの固有ベクトルをそれぞれ別々の変数 v1, v2 に割り当てます. > v1 := v[1..-1, 1]; # 1列目を抽出 v2 := v[1..-1, 2]; # 2列目を抽出 $vl \coloneqq \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $v2 := \begin{bmatrix} 0 \\ \cdot \end{bmatrix}$ (3.2.3)A を正方行列, λ を固有値, x を固有ベクトルとした場合, $A_{x} = \lambda_{x}$ の関係式が成り立ちますので, 求められた固有値と固有ベクトルをそれぞれ関係式に代入してみます.

AvI=eIvI より,以下のようになります.(参考) ドット(.) は内積を表します.> A.v1 = e1.v1; $<math display="block">\begin{bmatrix} 2\\2 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix}$ (3.2.4) 同様に, Av2=e2v2を調べます. > A.v2 = e2.v2; $\begin{bmatrix} 0\\-5 \end{bmatrix} = \begin{bmatrix} 0\\-5 \end{bmatrix}$ (3.2.5)

The Image of the Unit Sphere In 3-Space


```
連立1次方程式の解法
初期化します.
> restart;
線形代数(LinearAlgebra)パッケージをロードします.
> with(LinearAlgebra):
 (参考) コロン(:)で,結果を非表示にしています.
はじめに連立1次方程式を(係数を文字として)定義します.
> eq := [ a11*x+a12*y+a13*z=p, a21*x+a22*y+a23*z=q, a31*x+a32*y+a33*z=r ];
eq := [a11x + a12y + a13z = p, a21x + a22y + a23z = q, a31x + a32y + a33z = r] (5.1)
各1次方程式を表示します.
  eq[1];
   eq[2];
   eq[3];
                         a11 x + a12 y + a13 z = p
                         a21 x + a22 y + a23 z = q
                         a31 x + a32 y + a33 z = r
                                                                        (5.2)
係数を定義します.
> cffs := [all=1, al2=1, al3=-1, a21=2, a22=2, a23=0, a31=0, a32=1, a33=3,
   p=5, q=-1, r=2];
cffs := [a11 = 1, a12 = 1, a13 = -1, a21 = 2, a22 = 2, a23 = 0, a31 = 0, a32 = 1, a33 = 3, (5.3)
   p = 5, q = -1, r = 2]
係数を,式(5.1)に代入します.
  eqs := eval(eq, cffs);
               eqs := [x + y - z = 5, 2x + 2y = -1, y + 3z = 2]
                                                                        (5.4)
従属変数を定義します.
  := [x, y, z];
                              v := [x, y, z]
                                                                        (5.5)
solve コマンドを使用して連立1次方程式を解きます.
  sol := solve(eqs, v);
```

いわゆる線形代数

はじめての Maple

$$sol := \left[\left[x = -19, y = \frac{37}{2}, z = -\frac{11}{2} \right] \right]$$
 (5.6)

以下は行列操作によって連立方程式を解く手順になります.

係数行列を抽出します.

> (A, b) := GenerateMatrix(eqs, v); $A, b := \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$ (5.7)

抽出された係数行列を表示します.

> A; b;

連立1次方程式の係数行列を引数として解を求める LinearSolve コマンドを使用します.

> sol1 := LinearSolve(A, b);

$$sol1 := \begin{bmatrix} -19 \\ \frac{37}{2} \\ -\frac{11}{2} \end{bmatrix}$$
 (5.9)

A.v=bの式から $v=A^{-1}.b$ を計算して解を求めます. MatrixInverse コマンドは逆行列を計算します.

> Sol2 := MatrixInverse(A).b;

$$Sol2 := \begin{bmatrix} -19 \\ \frac{37}{2} \\ -\frac{11}{2} \end{bmatrix}$$
(5.10)

ガウス・ジョルダン消去法を用いた解法

27 / 30

係数拡大行列 M を作成します.同じコマンドにオプションを追加します. > M1 := GenerateMatrix(eqs, v, augmented=true); $MI \coloneqq \begin{bmatrix} 1 & 1 & -1 & 5 \\ 2 & 2 & 0 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$ (5.11) (参考) 行列 (5.11)は, 以下の方法でも得ることができます. $A, b := \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$ <A | b>; (5.12) ガウス・ジョルダンの消去法を用いた解法になります. > M2 := ReducedRowEchelonForm(M1); $M2 := \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & \frac{37}{2} \\ 0 & 0 & 1 & -\frac{11}{2} \end{bmatrix}$ (5.13) 連立1次方程式を視覚化するコマンドを使用するために、学生向けの線形代数(LinearAlgebra)パッ ケージのコマンドを使用してみます. > with(Student[LinearAlgebra]): 連立1次方程式を eqs として再定義します. > eqs;[x + y - z = 5, 2x + 2y = -1, y + 3z = 2](5.14)LinearSystemPlot コマンドを使用します. 各方程式は, それぞれ平面の式を表しています. > LinearSystemPlot(eqs);

A System of Linear Equations 4.5 5 5.5 б 176 1780 182 184 186 190 192 19.4 19.8 19.4 19 18.6 18.2 (参考) 以下の連立方程式を LinearSystemPlot コマンドで解きます. x + y = 1 $2x - 3y = \frac{1}{2}$ > LinearSystemPlot([x+y=1, 2*x-3*y=1/2]);

ステップ・バイ・ステップ式 はじめての Maple 応用編

微分方程式に挑む!

微分方程式の定義方法およびその解法を習得します.

目次

- 数学モデルの作り方
- 常微分方程式の定義と解析解
- •2階常微分方程式の数値解

- 1. 現実モデルを定式化する
- 2. モデルのための仮定を立てる
- 3. 数学問題を定式化する
- 4. 数学問題を解く
- 5. 解の意味を説明する
- 6. モデルの妥当性を検証する(必要に応じて2に戻る)
- 7. モデルを用いて説明,予測,決定,計画を行う

参考図書: 『微分方程式で数学モデルを作ろう』,日本評論社, D・バージェス/M・ポリー著,垣田高 夫/大町比佐栄訳

常微分方程式の定義と解析解

少しだけ常微分方程式のこと

関数の微分である導関数を含む方程式を微分方程式と呼び,特に独立変数がひとつの微分方程式を常 微分方程式と呼びます.例えば, y(x)や x(t)などの関数が微分され,それらで式が組み立てられます.

 $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{dx}{dt}, \frac{d^2x}{dt^2}, \dots$

(参考) 常微分方程式の英語は Ordinary Differential Equation になります.通常, 頭文字から ODE と呼ばれます.

1階常微分方程式

方程式に含まれる導関数の中でもっとも高い次数が1の場合(階数が1階である場合),1階常微分 方程式と呼びます.通常,テキストなどでは、以下のように1階常微分方程式が記述されています.

$$\frac{dy}{dx} = (1 - y^2) \tan x$$

あるいは,

$$y' = (1 - y^2) \tan x$$

ただし、もう少し記述を正確にすると、以下のようになります.

$$y'(x) = (1 - y(x)^2) \tan x$$

つまり, $y \downarrow x の 関数 となります.$

ここで, 初期化します.

> restart;

(個1)
$$\frac{d}{dx} y(x) = (1 - y(x)^2) \tan(x)$$

1階の常微分方程式 $\frac{d}{dx} y(x) = (1 - y(x)^2) \tan(x) を定義します.
> odel := diff(y(x),x) = (1 - y(x)^2) \tan(x) (2.2.1.1)
教科書などでは、変数分離法を用いて解きますが、Maple は dsolve コマンドで解きます.
任意定数 (_Cl) を含む一般解は、以下のようになります.
> soll := dsolve(odel);
 soll := y(x) = tanh(-ln(cos(x)) + _Cl) (2.2.1.2)
任意定数 _C を パラメ - タ p に置き換えます.
> solla := subs(_Cl = p, soll);
 solla := y(x) = tanh(-ln(cos(x)) + p) (2.2.1.3)
式 solla := y(x) = tanh(-ln(cos(x)) + p) (2.2.1.4)
plots パッケージの animate コマンドを用いて, パラメ - タ p の変化を見てみます.
> plots[animate](plot, [eq1, x=-5..5], p=-10..10);$

$$sol2 := \frac{y(x)}{x^2} + \frac{\sqrt{x^2 + y(x)^2}}{x^2} - _CI = 0$$
 (2.2.2.2)
(y(t) で式を整理します.
> sol2a := isolate(sol2, y(x));
 sol2a := y(x) = $\frac{-1 + _CI^2 x^2}{2 _CI}$ (2.2.2.3)
任意定数 _C1 を q で置き換えます.
> sol2b := eval(sol2a, [_C1 = q]);
 sol2b := y(x) = $\frac{-1 + q^2 x^2}{2 _q}$ (2.2.2.4)
式 sol2b := y(x) = $\frac{-1 + q^2 x^2}{2 _q}$ の右辺を eq2 に割り当てます.
> eq2 := rhs(sol2b);
 eq2 := $\frac{-1 + q^2 x^2}{2 _q}$ (2.2.2.5)
plots パッケージの animate コマンドを用いて, パラメータ q の変化を見てみます.
> plots[animate](plot, [eq2, x=-3..3], q=-10..10);

<u>2階常微分方程式の解</u>

方程式に含まれる導関数の中でもっとも高い次数が2の場合(階数が2階である場合),2階常微分 方程式と呼びます.

1. 解を理解するためのポイント①

解の形が

 $x(t) = C \cdot e^{\lambda t}$

と仮定されます. ただし, λ は定数になります.

2. 解を理解するためのポイント②

 λ_1 と λ_2 の組は以下の3つの型に分けられます.

- 1)異なる2つの実数になる場合
- 2) 異なる2つの複素数になる場合
- 3)同じ二つの実数になる場合

3. 解を理解するためのポイント③

重ね合わせの原理によって、解は以下のように記述できます(ただし、 $C_1 \succeq C_2$ は任意常数).

$$x(t) = C_1 \cdot e^{\lambda_1 t} + C_2 \cdot e^{\lambda_2 t}$$

次に、式
$$eq2 := mC\lambda^{2} e^{\lambda t} + eC\lambda e^{\lambda t} + kC e^{\lambda t} = 0$$
の両辺を $Ce^{\lambda t}$ で割ります.
> $eq2a := \frac{mC\lambda^{2} e^{\lambda t} + eC\lambda e^{\lambda t} + kC e^{\lambda t}}{C e^{\lambda t}} = 0$ (2.3.1.4)
 $eq2a := \frac{mC\lambda^{2} e^{\lambda t} + eC\lambda e^{\lambda t} + kC e^{\lambda t}}{C e^{\lambda t}} = 0$ を展開します.
 $eq2a := \frac{mC\lambda^{2} e^{\lambda t} + eC\lambda e^{\lambda t} + kC e^{\lambda t}}{C e^{\lambda t}} = 0$ を展開します.
 $eq2b := m\lambda^{2} + c\lambda + k = 0$ (2.3.1.5)
 $eq2b := m\lambda^{2} + c\lambda + k = 0$ は特性が理社と呼ばれ、その根は特性根と呼ばれます. こ
 cc 、特性が確式 $eq2b := m\lambda^{2} + c\lambda + k = 0$ をんについて解きます. また、2つの特性根を
 λ_{1}, λ_{2} に、そのまま割り当てます.
> (1ambda[1], 1ambda[2]) := solve(eq2b, 1ambda);
 $\lambda_{1}, \lambda_{2} := \frac{-c + \sqrt{c^{2} - 4mk}}{2m}, -\frac{c + \sqrt{c^{2} - 4mk}}{2m}$ (2.3.1.6)
特性根 λ_{1}, λ_{2} の世質は、 $e^{2} - 4 mk$ の符号によって変わります. すなわち;
1) $e^{2} - 4 mk > 0$ のとき、異なる2つの実根を持ちます.
2) $e^{2} - 4 mk = 0$ のとき、車根 (実数) を持ちます.
(修考) これは、高校数学で習う判別式を表しています. 判別式とは、2次方程式が異なる2つ
の実根を持つかどうかを判別するための式になります.
1) 異なる2つの実数になる場合
2) 異なる2つの実数になる場合
3) 同じ二つの実数になる場合
は、以下のような表現に改めることができます.

11 / 39

微分方程式に挑む!

1)異なる2つの実根を持つ場合 (
$$c^2 - 4mk > 0$$
のとき)

 2)異なる2つの虚根を持つ場合 ($c^2 - 4mk < 0$ のとき)

 3)重根 (実数の根)を持つ場 ($c^2 - 4mk = 0$ のとき)

指数関数の特性 初期化します. > restart: 指数関数をfとして以下のように定義します. > f := exp(lambda1*t) + exp(lambda2*t); $f := e^{\lambda l t} + e^{\lambda 2 t}$ (2.3.2.1) 1) 異なる2つの実根を持つ場合 <u>a) ともに正の場合</u> 特性根を定義します. > pa := [lambda1 = 1, lambda2 = 2]; $pa := [\lambda l = 1, \lambda 2 = 2]$ (2.3.2.1.1.1)> fa := eval(f, pa); $fa := e^t + e^{2t}$ (2.3.2.1.1.2) 時間が十分経った($t \rightarrow +\infty$)としてプロットします. > plot(fa, t=0..+infinity);

2階常微分方程式<u>の行列表現</u> 初期化します. > restart: 2階常微分方程式を行列表現に変換します. > deq1 := m*diff(x(t), t, t) + c*diff(x(t), t) + k*x(t) = 0; $deq1 \coloneqq m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$ (2.4.1)新たな時間で変化する(状態)変数を導入します.x(t)を時間 t について1 階微分して得られる変 数を v(t) とします. > deq2 := diff(x(t), t) = v(t); $deg2 := \dot{x}(t) = v(t)$ (2.4.2)deq1 に deq2 を代入して, deq3 とします. > deq3 := eval(deq1, [deq2]); $deq3 := m\dot{v}(t) + cv(t) + kx(t) = 0$ (2.4.3)deq3 を $\frac{\mathrm{d}}{\mathrm{d}t}v(t)$ で整理します. > deq4 := isolate(deq3, diff(v(t),t)); $deq4 := \dot{v}(t) = \frac{-c v(t) - k x(t)}{m}$ (2.4.4)deq4 を展開します. > deq5 := expand(deq4); $deq5 := \dot{v}(t) = -\frac{c v(t)}{m} - \frac{k x(t)}{m}$ (2.4.5)ここで,行列で式を整理するために, x(t) と v(t) でベクトル xv を定義します. > xv := Vector([x(t), v(t)]); $xv := \begin{bmatrix} x(t) \\ v(t) \end{bmatrix}$ (2.4.6)deq2と deq5 を確認します. • deq2; $\dot{x}(t) = v(t)$ (2.4.7)

25 / 39
微分方程式に挑む!

$$\dot{v}(t) = -\frac{c v(t)}{m} - \frac{k x(t)}{m}$$
(2.4.8)
deq2, deq5 $\&$ 56 c 1 $\&$ 0 g 3 g

$$\frac{\frac{-c + \sqrt{c^2 - 4mk}}{2m}}{-\frac{c + \sqrt{c^2 - 4mk}}{2m}}$$
(2.4.11)

これは,特性方程式の特性根と同じ値になります.

特性方程式 $eq2b := m \lambda^2 + c \lambda + k = 0$

L

特性根
$$\lambda_1, \lambda_2 := \frac{-c + \sqrt{c^2 - 4mk}}{2m}, -\frac{c + \sqrt{c^2 - 4mk}}{2m}$$

微分方程式に挑む!

$$\begin{bmatrix} \frac{(-c+\sqrt{c^2-4mk})t}{2m} + C2e^{-\frac{(c+\sqrt{c^2-4mk})t}{2m}} & O^{2} \oplus O^{2} \oplus$$

$$sol := x(t) = -\frac{\sqrt{395} e^{-\frac{t}{6}} \sin\left(\frac{\sqrt{395} t}{6}\right)}{395} - e^{-\frac{t}{6}} \cos\left(\frac{\sqrt{395} t}{6}\right) \quad (2.5.6)$$

$$\mathbb{R} \text{ BoshLBIL, High Hyperbolic test.}$$

$$(483) \text{ Hyperbolic test.}$$

$$(483)$$

$$\begin{cases} > \text{ pics } := x(0) = x0, \ D(x)(0) = 0; \\ pics := x(0) = x0, \ D(x)(0) = 0 \text{ odd} \text{ m} \text{Ret}^{2} \text{ dd}^{2} \text{ dd} \text{ constant}^{2} \text{ dd}^{2} \text{$$

31 / 39

ラプラス変換による初期値問題の解法

初期化します.

> restart:

積分変換は、数学的に(あるいは物理的に)関数 f(t) をある領域 t から別の領域 a へ変換する積分 です.

$$g(\alpha) = \int_{a}^{b} f(t) K(\alpha, t) dt$$

積分変換として,ラプラス変換やフーリエ変換がよく知られています.例えば,ラプラス変換は,微 分方程式を代数方程式に変換します(計算が簡単になります).また,フーリエ変換は,時系列デー 夕を時間領域から周波数領域へ変換します(見えないものが見えてきます).

積分変換を利用するには, inttrans パッケージのコマンドを使用します.

with(inttrans);
 [addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, invhilbert, invlaplace, invmellin, laplace, mellin, savetable]
 (2.6.1)

ラプラス変換を用いて微分方程式の初期値問題を解いてみます.

ここで,2階の常微分方程式を定義します.

```
> deq := diff(x(t),t,t) + 2*diff(x(t),t) - 3*x(t) = 0;

deq := \ddot{x}(t) + 2\dot{x}(t) - 3x(t) = 0
(2.6.2)
```

初期値x(0) = 0, $\frac{d}{dt}x(0) = 1$ を集合 { }として定義します.

(参考) D は微分演算子になります.

> ics := { x(0)=0, D(x)(0)=1 }; $ics := \{x(0)=0, D(x)(0)=1\}$ (2.6.3)

微分方程式をラプラス変換します(領域 t から領域 s に変換します).

> Leq1 := laplace(deq, t, s); Leq1 := s^2 laplace(x(t), t, s) - D(x)(0) - sx(0) + 2 s laplace(x(t), t, s) - 2x(0) (2.6.4) - 3 laplace(x(t), t, s) = 0

式を見やすくするために,いったん laplace(x(t),t,s)をXに置き換えます.

L

微分方程式に挑む!

$$\begin{bmatrix} > \log 2 := \operatorname{subs}(\operatorname{laplace}(x(t), t, s) = X, \log 1); \\ I = Q^2 := s^2 X - D(x)(0) - sx(0) + 2sX - 2x(0) - 3X = 0 \quad (2.6.5) \\ \text{UBR} + 4 \times \mathbb{I}(t + X) + 4 = 0 \times 1 + 2sX - 3X = 0 \quad (2.6.6) \\ \times \operatorname{CTA} + 4 \times \operatorname{I}(\operatorname{Leq2}, \operatorname{ics}); \\ I = \operatorname{Leq3} := \operatorname{eval}(\operatorname{Leq2}, \operatorname{ics}); \\ I = \operatorname{Leq3} := \operatorname{eval}(\operatorname{Leq2}, \operatorname{ics}); \\ I = \operatorname{Leq3} := \operatorname{subs}(\operatorname{Leq3}, X); \\ I = \operatorname{Leq4} := \operatorname{Isolate}(\operatorname{Leq3}, X); \\ I = \operatorname{Leq4} := \operatorname{Isolate}(\operatorname{Leq3}, X); \\ I = \operatorname{Leq4} := \operatorname{Isolate}(\operatorname{Leq3}, \operatorname{I}(x); \\ I = \operatorname{Leq4} := \operatorname{Isolate}(\operatorname{Leq3}, \operatorname{I}(x); \\ I = \operatorname{Leq4} := \operatorname{Isolate}(\operatorname{Leq3}, \operatorname{I}(x); \\ I = \operatorname{Leq5} := \operatorname{subs}(\operatorname{X-laplace}(x(t), t, s)) = \operatorname{Leq4}; I = \operatorname{I}(\operatorname{I}(x); I); \\ I = \operatorname{Leq5} := \operatorname{Iaplace}(x(t), t, s) = -\frac{1}{4} + \frac{1}{(s+3)} + \frac{1}{4} + \frac{1}{(s-1)} \quad (2.6.8) \\ = \operatorname{Leq6} := \operatorname{Iaplace}(x(t), t, s) = -\frac{1}{4} + \frac{1}{(s+3)} + \frac{1}{4} + \frac{1}{(s-1)} \quad (2.6.9) \\ = \operatorname{Leq6} := \operatorname{Iaplace}(x(t), t, s) = -\frac{1}{4} + \frac{1}{4} + \frac{1}{(s-1)} \quad (2.6.9) \\ = \operatorname{Leq7} := \operatorname{Invlaplace}(\operatorname{Leq6}, s, t); \\ I = \operatorname{Leq7} := \operatorname{Iavlace}(\operatorname{Iavb}(\operatorname{I}(x)) = -\frac{e^{-3t}}{4} + \frac{e^{t}}{4} \quad (2.6.10) \\ = \operatorname{Iaplace}(\operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}); \\ d \operatorname{Iavb}(\operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}); \\ d \operatorname{Iavb}(\operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}); \\ d \operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}); \\ (\operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}); \\ (\operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb}) = \operatorname{Iavb}(\operatorname{Iavb$$

2 階常微分方程式の数値解法 初期化します. restart; 2階の常微分方程式を定義します. ode := m*diff(x(t), t, t) + c*diff(x(t), t) + k*x(t) = 0; $ode \coloneqq m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$ (3.1) パラメータを定義します. params := [m=1, c=1/3, k=11]; params := $\left[m=1, c=\frac{1}{3}, k=11\right]$ (3.2)パラメータ params := $\left[m=1, c=\frac{1}{3}, k=11\right]$ を式 $ode := m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$ に代入し ます. odea := eval(ode, params); $odea := \ddot{x}(t) + \frac{\dot{x}(t)}{3} + 11 x(t) = 0$ (3.3)初期条件を定義します. ics := x(0) = -1, D(x)(0) = 0; ics := x(0) = -1, D(x)(0) = 0(3.4) 数値解を求めるためのオプション(numeric)を指定します. > dsol := dsolve({odea,ics}, numeric); $dsol := \mathbf{proc}(x_rkf45) \dots \mathbf{end} \mathbf{proc}$ (3.5) 数値解を求める処理が一種のプログラム形式で出力されます. すなわち,dsol にある値を引数として 与えることで、その値に対する出力値が計算されます.このプログラム形式の数値解を、解関数と呼び ます. さらに, Maple の中では一般的な名称として, プロシージャ(処理の単位) という言葉が使用さ れます. t=0 として, 解関数 dsol を計算してみます. dsol(0); $[t=0., x(t) = -1., \dot{x}(t) = 0.]$ (3.6)

ステップ・バイ・ステップ式 はじめての Maple 応用編

プログラミング前夜

Maple プログラミング言語の基礎を習得します.

目次

- ・処理の再利用
- 制御構文
- それは振動しますか?


```
プロシージャ化(処理を複数行で記述する場合)
 (基本構文)
プロシージャ名 := proc( 引数 )
  処理;
end proc;
一般的に,処理は複数行で記述します.
初期化します.
> restart;
引数なしの場合
> myproc1 := proc()
     print( "Hello World!" );
  end proc;
           myprocl := proc() print("Hello World!") end proc
                                                           (1.2.1)
プロシージャを実行してみます.
> myproc1;
                                                            (1.2.2)
                           myprocl
ただし、プロシージャ名が表示されるだけです.プロシージャを実行するためには()が必要にな
ります.
> myproc1();
                        "Hello World!"
                                                            (1.2.3)
プロシージャを1行で定義することも可能です.
> myproc2 := proc() printf( "Hello World!" ); end proc;
          myproc2 := proc() printf("Hello World!") end proc
                                                           (1.2.4)
プロシージャを実行します.
> myproc2();
Hello World!
ある範囲(区間)で \sin(x) をプロットするプロシージャ
```


▼ <u>グローバル変数とローカル変数</u>

一般的に,グローバル変数は,すべてのスコープ(変数の参照範囲)から参照可能な変数(大域的に 参照可能な変数)になり,ローカル変数は,そのプロシージャ内でのみ参照可能な変数(局所的に参 照可能な変数)になります.

処理の内容によって、グローバル変数とローカル変数を使い分けることになりますが、通常 [プロシージャの作成において] グローバル変数の使用はできるだけ避けるようにします. これは、グローバル変数に格納されている値や式が、全体の処理の中で意図せず変更される可能性を防ぐためです.

初期化します.

> restart;

(例) グローバル変数とローカル変数の違い

プロシージャ名を myproc5 として,以下のプロシージャを定義します.

はじめに,変数 X に 5 を割り当てます(格納します). この X は,グローバル変数になりま す.つまり,スコープ(参照の有効範囲)はワークシート内すべてになります.


```
引数の型・変数の型
プロシージャ,引数,およびローカル変数の型を明示的に与えることができます.
 (基本構文)
プロシージャ名 := proc( 引数::型 )::型
   local 変数::型
  処理:
end proc;
 2つの整数値(integer)を足し合わせ、計算結果も整数値(integer)とします.
  # ------
  # 整数値の足し算
  # ------
  myAdd := proc( a::integer, b::integer )::integer;
     # ローカル変数の宣言
     local sum;
     # 引数 a と b の足し算
     sum := a + b;
  end proc: # myAdd
1と2の足し算を実行し,変数pに割り当てます(格納します).
> p := myAdd(1, 2);
                                                         (1.4.1)
                          p \coloneqq 3
変数 p の型を確認します.
> whattype(p);
                                                         (1.4.2)
                          integer
数値 1.0 (浮動小数点型 = float) と整数値 2 (整数型 = integer) の足し算を実行します.
> p := myAdd(1.0, 2);
Error, invalid input: myAdd expects its 1st argument, a, to be of
<u>type integer, but received 1.0</u>
エラーメッセージが出力されます.第1番目の引数(argument) = 1.0 が数値(浮動小数点型)の
ため, 整数型と一致しません.
```

```
制御構文
処理の流れを制御する構文です.
 <u>条件分岐(if-then-else-end if)</u>
  条件(式)によって処理が分岐します.
   (基本構文)
     if 条件式1 then
       処理1;
     elif 条件式2 then
       処理2;
     else
       処理3;
     end if;
  初期化します.
  \triangleright restart;
    数字の大小を判別する条件分岐
     数字の大小を判別する条件分岐を作成します.
     はじめに, a および b に適当な(整数)値を代入します.
     > a := 1;
                              a \coloneqq 1
                                                             (2.1.1.1)
     > b := 2;
                               b \coloneqq 2
                                                             (2.1.1.2)
     条件式 a > b の評価結果に応じて出力されるメッセージが変わります.
    > if a > b then
         print( "a のほうが大きい" );
       else
```

```
print( "b のほうが大きい" );
   end if;
                      "bのほうが大きい"
                                                            (2.1.1.3)
条件式 a > b を evalb で評価してみます.
> evalb( a > b );
                            false
                                                            (2.1.1.4)
条件式を a < b として, evalb で評価してみます.
> evalb( a < b );
                                                            (2.1.1.5)
                            true
次に, a と b が等しい場合の処理を追加します. この時点で, 定義されている値は a=1 および
b=2 になります. つまり, a < b (1 < 2)の関係にあります.
> if a > b then
     print( "a のほうが大きい" );
  elif a = b then
     print( "a と b は等しい" );
  else
     print( "b のほうが大きい" );
  end if;
                      "bのほうが大きい"
                                                            (2.1.1.6)
ここで, a と b を等しい値で定義しなおします.
> a := 3;
  b := 3;
                           a \coloneqq 3
                           b \coloneqq 3
                                                            (2.1.1.7)
> if a > b then
     print( "a のほうが大きい" );
  elif a = b then
     print( "a と b は等しい" );
  else
     print( "b のほうが大きい" );
   end if;
                       "aとbは等しい"
                                                            (2.1.1.8)
```

条件分岐を含むプロシージャの作成手順 上記の処理を引数 a, b としてプロシージャにまとめます. すなわち, 再利用可能な処理にまと めます. ここでは、以下の手順でまとめることにします. ① プロシージャ名を myproc6 として, proc 構造を用意します. また, 引数を a, b とします, > myproc6 := proc(a, b) end proc: ② 上の大小を評価してメッセージを出力する if 文を挿入します. > myproc6 := proc(a, b) if a > b then print("a のほうが大きい"); elif a = b then print("a と b は等しい"); else print("b のほうが大きい"); end if: end proc: ③ if から end if; までの行を右方向に下げます(インデントします). (参考) 通常, その処理が, 上位の処理にネストされているとき(入れ子になっているとき), インデントを設けます.2文字文から4文字程度が一般的です.ここでは、インデントを3文字 文にしています. > myproc6 := proc(a, b) ### if a > b then ### print("a のほうが大きい"); ### elif a = b then ### print("a と b は等しい"); ### else ### print("b のほうが大きい"); ### end if;

end proc:

④ 説明やコメントを追加します(###は取り除きます. ###はインデントを示すために挿入 しました.通常は必要ありません). # -----_____ # 2変数に格納されている値の大小を比較 # -----myproc6 := proc(a, b) # a > b **の場合** if a > b then # 以下のメッセージを表示 print("a のほうが大きい"); # a = b の場合 elif a = b then # 以下のメッセージを表示 print("a と b は等しい"); # 2つの条件式から外れた場合の処理 else # 以下のメッセージを表示 print("b のほうが大きい"); end if; end proc: # myproc6 a と b を a > b として定義しなおします. > a := 5; b := 3; $a \coloneqq 5$ $b \coloneqq 3$ (2.1.2.1) myproc6 に値を与えます. > myproc6(a, b); "aのほうが大きい" (2.1.2.2)引数の変数名は a, b 以外でも使用できます. > x := 30;Y := -20; $X \coloneqq 30$ $Y \coloneqq -20$ (2.1.2.3)同様に myproc6 に値を与えます. > myproc6(X, Y);"aのほうが大きい" (2.1.2.4)

```
(参考)引数を比較するプロシージャに変更
1番目の引数と2番目の引数を比較するプロシージャであると解釈しなおします.
表示内容を書き換えます.
> # ------
 # 2変数に格納されている値の大小を比較
 # -------
 myproc6 := proc(a, b)
   # a > b の場合
   if a > b then
      # 以下のメッセージを表示
      print( "引数1のほうが大きい" );
    # a = b の場合
   elif a = b then
      # 以下のメッセージを表示
      print( "引数1と引数2は等しい" );
    # 2つの条件式から外れた場合の処理
    else
      # 以下のメッセージを表示
      print( "引数2のほうが大きい" );
    end if;
 end proc: # myproc6
(少しだけ)一般化されたプロシージャになります.
 myproc6(X, Y);
               "引数1のほうが大きい"
                                              (2.1.3.1)
```

> total := 0; # はじめの値を0とします i := 1; total := total + i; (0) + 1; # total := i := 2; total := total i; total := total + 1; # total := ((0)+1) + 2; i := 3; total := total i; # total := (((0) + 1) + 2) + 3; i := 4; total := total i; + # total := ((((0) + 1) + 2) + 3) + 4; total := 0 $i \coloneqq 1$ $total \coloneqq 1$ $i \coloneqq 2$ total := 3 $i \coloneqq 3$ total := 6 $i \coloneqq 4$ (2.2.1.1.7)total := 10ここで,いったい何がなされたのでしょうか??? 実は, total := total + 1 total := total + 2 total := total + 3 total := total + 4 をインデックス **i** を用いて total := total + i と式を一般化しました. 繰り返し文の利用 iが1から4まで1ずつおおきくなります(これを、インクリメント、と表現します). Maple の処理で記述すると以下のようになります. i from 1 to 4 by 1 $(\pm \cup < \downarrow i \text{ from 1 by 1 to 4})$ さらに, Maple の繰り返し文(for-do-end do文)を追加します.

```
for i from 1 to 4 by 1 do
end do;
ここで, iの変化を見ます(i に格納されている値を表示するだけの処理です).
(参考) 'i' は文字そのものを表します.
print コマンドは, 表示処理を実行します.
> for i from 1 to 4 by 1 do
    print( 'i' = i );
  end do;
                         i = 1
                         i=2
                         i = 3
                                                     (2.2.1.2.1)
                         i = 4
以下の処理を繰り返し文(for-do-end do文)を用いて整理します.
total := 0;
(ここから for 文が始まり・・・)
i := 1;
total := total + i;
i := 2;
total := total + i;
i := 3;
total := total + i;
i := 4;
total := total + i;
(・・・ここで for 文が終わります)
すなわち,
for - doとend do;の間に
total := total + i を挿入し,処理を整理します. なお, total のはじめの値(初期
値)は0になります.
> total := 0; # 初期値の設定
  for i from 1 to 4 by 1 do
    print( 'i' = i ); # i を参照するために残してあります
     total := total + i;
```

end do; total := 0*i* = 1 total := 1i=2*total* := 3 i=3total := 6i = 4total := 10(2.2.1.2.2)iが1ずつインクリメントされる場合, by 1 を省略できます. for i from 1 to 4 do print('i' = i); # i を参照するために残してあります total := total + i; end do; total := 0i = 1total := 1i=2*total* := 3 i = 3total := 6i = 4(2.2.1.2.3) total := 10<u>プロシージャへの拡張</u> ここで, 0, 1, 2, 3, ..., n までを足し合わせるプロシージャを作成します. # ------> # 0, 1, 2, 3, ..., n までの足し算 # # 引数: 正の整数 (n) # # _____ mySum := proc(n::posint) # ローカル変数の定義 local i, total; # 初期値の設定 total := 0; # 0 から n までの加算 for i from 1 to n do # 加算 total := total + i;

end do; end proc; # mySum (2.2.1.3.1) $mySum := \mathbf{proc}(n::posint)$ local *i*, total; total := 0; for *i* to *n* do total := total + i end do end proc n = 4 として, mySum を実行します. > mySum(4); 10 (2.2.1.3.2)n = 10 として, mySum を実行します. > mySum(10); 55 (2.2.1.3.3)<u>(参考)sum コマンドを用いて実行します</u> 数式入力 $\sum_{k=0}^{4} k$ をテキスト入力で実行します. > sum('k', 'k'=0..4); 10 (2.2.1.3.1.1)数式入力 $\sum_{k=0}^{10} k$ をテキスト入力で実行します. > sum('k', 'k'=0..10); 55 (2.2.1.3.1.2)sum を用いて, 第 n 項を計算します. > sum('k', 'k'=0..n); $\frac{(n+1)^2}{2} - \frac{n}{2} - \frac{1}{2}$ (2.2.1.3.1.3)確認のため, n=10 を代入してみます. > eval((2.2.1.3.1.3), [n=10]); 55 (2.2.1.3.1.4) <u>(参考)2つのインデックス操作</u> 3×5の行列 A を記号で定義します. > A := Matrix(3, 5, symbol=a); $A := \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} \end{bmatrix}$ (2.2.2.1) 各要素をインデックスといっしょにひとつずつ表示します. このケースではiが行のインデック ス, j が列のインデックスになります. > for i from 1 to 3 do for j from 1 to 5 do # インデックス i, j, # 行列要素 a[i, j] の順番で表示 print(i, j, A[i,j]); end do: # j end do: # i 1, 1, *a*_{1, 1} $1, 2, a_{1, 2}$ $1, 3, a_{1,3}$ 1, 4, *a*_{1, 4} $1, 5, a_{1, 5}$ $2, 1, a_{2,1}$ $2, 2, a_{2,2}$ $2, 3, a_{2,3}$ 2, 4, *a*_{2, 4} $2, 5, a_{2, 5}$ $3, 1, a_{3,1}$ $3, 2, a_{3, 2}$ $3, 3, a_{3, 3}$ 3, 4, *a*_{3, 4} 3, 5, *a*_{3, 5} (2.2.2.2)

それは振動しますか?

2階常微分方程式の係数および初期条件を変化させることによって,解の変動を調べます.

初期化します.

> restart;

>

Maple による2階常微分方程式の解法と解のプロット

以下は、2階常微分方程式を定義するところから、必要な値や条件を定義して、解をプロットすると ころまでの処理になります.

① 2階常微分方程式を状態方程式に変換して定義します.

状態方程式とは、 行列表現に変換した1階の常微分方程式系になります.

(参考)「微分方程式に挑む!」の[2階常微分方程式の行列表現]を参照してください.

> ode :=
$$m*diff(x(t),t,t) + c*diff(x(t),t) + k*x(t) = 0;$$

 $ode := m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$
(3.1.1)

ode を行列表現にすると過程で以下の1階の常微分方程式が導かれます.

> deq2 := diff(v(t), t) = -(k/m)*x(t) - (c/m)*v(t);

$$deq2 := \dot{v}(t) = -\frac{kx(t)}{m} - \frac{cv(t)}{m}$$
(3.1.3)

② 適当な係数 m, c, および k を定義します.

```
> params := [ m=1, c=1, k=6 ];

params := [m=1, c=1, k=6] (3.1.4)
```

③ 定義した係数を deq1, deq2 に代入し, deq1p, deq2p をそれぞれ定義します.

> deq1p := eval(deq1, params);
deq2p := eval(deq2, params);

$$deq1p := \dot{x}(t) = v(t)$$

 $deq2p := \dot{v}(t) = -6 x(t) - v(t)$
(3.1.5)

④ 初期条件を定義します.


```
初期化します.
> restart;
> mySim4 := proc(m, c, k, x0, dx0, et)
      # ------
      local r1, i1, r2, i2, ri, A, evals, plt1,
           deq1, deq2, ics, sol, eq;
      A := Matrix( 2,2, [0, 1, -k/m, -c/m]);
      evals := LinearAlgebra[Eigenvalues](A);
      r1 := Re(evals[1]);
      i1 := Im(evals[1]);
      r2 := Re(evals[2]);
      i2 := Im(evals[2]);
      ri := [r1, i1, r2, i2];
      # ------
      deq1 := diff(x(t), t) = v(t);
      deq2 := diff(v(t), t) = -(k/m)*x(t) - (c/m)*v(t);
      # ------
      ics := \{x(0)=x0, D(x)(0)=dx0\};
      sol := dsolve( {deq1, deq2} union ics );
      # ------
      eq := rhs( sol[2] );
      plt1 := plot( eq, t=0..et );
      # ------
      return(plt1, evals, ri);
  end proc: # mySim4
パラメータを定義し, mySim4 を実行します.
> sp := 1, 1, 6, -1, 0, 10;
                     sp := 1, 1, 6, -1, 0, 10
                                                              (3.2.4.2)
> mySim4(sp);
       PLOT(...), \begin{vmatrix} -\frac{1}{2} + \frac{I\sqrt{23}}{2} \\ -\frac{1}{2} - \frac{I\sqrt{23}}{2} \end{vmatrix}, \begin{bmatrix} -\frac{1}{2}, \frac{\sqrt{23}}{2}, -\frac{1}{2}, -\frac{\sqrt{23}}{2} \end{bmatrix}
                                                              (3.2.4.3)
実部の符号と条件分岐
 ここで,実部の符号から,その解の振る舞いを調べる処理(条件分岐)を追加します.
```

初期化します.

> restart; > mySim5 := proc(m, c, k, x0, dx0, et) プログラミング前夜

```
# ------
     local r1, i1, r2, i2, ri, A, evals, plt1,
         deq1, deq2, ics, sol, eq;
     # ------
     A := Matrix(2,2, [0, 1, -k/m, -c/m]);
     evals := LinearAlgebra[Eigenvalues](A);
     # ------
     r1 := Re(evals[1]);
     i1 := Im(evals[1]);
     r2 := Re(evals[2]);
     i2 := Im(evals[2]);
    ri := [r1, i1, r2, i2];
     # ------
     if r1 < 0 and r2 < 0 then
       # 収束します
     elif r1 > 0 or r2 > 0 then
       # 発散します
     end if;
     # ------
     deq1 := diff(x(t), t) = v(t);
     deq2 := diff(v(t), t) = -(k/m)*x(t) - (c/m)*v(t);
     # ------
     ics := \{x(0)=x0, D(x)(0)=dx0\};
     sol := dsolve( {deq1, deq2} union ics );
     # ------
     eq := rhs( sol[2] );
     plt1 := plot( eq, t=0..et );
     # ------
     return(plt1, evals, ri);
  end proc: # mySim5
虚部の符号と条件分岐
続けて,虚部のありなしから,その解の振る舞いを調べる処理(条件分岐)を追加します.
> mySim6 := proc(m, c, k, x0, dx0, et)
     local r1, i1, r2, i2, ri, A, evals, plt1,
         deq1, deq2, ics, sol, eq;
     # ------
     A := Matrix( 2,2, [0, 1, -k/m, -c/m]);
     evals := LinearAlgebra[Eigenvalues](A);
     # ------
    r1 := Re(evals[1]);
     i1 := Im(evals[1]);
    r2 := Re(evals[2]);
```

i2 := Im(evals[2]);
ri := [r1, i1, r2, i2];

```
# ------
    if r1 < 0 and r2 < 0 then
      if i1 = 0 or i2 = 0 then
         # 収束しますが, 振動はしません.
      else
         # 振動しながら収束します.
      end if;
    elif r1 > 0 or r2 > 0 then
      if i1 = 0 or i2 = 0 then
         # 発散し, 振動はしません.
      else
         # 振動しながら発散します.
      end if;
    end if;
    # ------
    deq1 := diff(x(t), t) = v(t);
    deq2 := diff(v(t), t) = -(k/m)*x(t) - (c/m)*v(t);
    # ------
    ics := \{x(0)=x0, D(x)(0)=dx0\};
    sol := dsolve( {deq1, deq2} union ics );
    # ------
    eq := rhs( sol[2] );
    plt1 := plot( eq, t=0..et );
    # ------
    return(plt1, evals, ri);
  end proc: # mySim6
コメント部分を、文字列として出力します. evalf コマンドおよび evalb コマンドを追加しま
す. return コマンドは、いったん無効にします(コメントにします).
> mySim6 := proc(m, c, k, x0, dx0, et)
    # ------
    local r1, i1, r2, i2, ri, A, evals, plt1,
         deq1, deq2, ics, sol, eq;
    A := Matrix(2,2, [0, 1, -k/m, -c/m]);
    evals := LinearAlgebra[Eigenvalues](A);
    # ------
    r1 := evalf( Re(evals[1]) );
    i1 := evalf( Im(evals[1]) );
    r2 := evalf( Re(evals[2]) );
    i2 := evalf( Im(evals[2]) );
    ri := [r1, i1, r2, i2];
```

```
# ------
     if evalb(r1 < 0) and evalb(r2 < 0) then
       if i1 = 0 or i2 = 0 then
         print("収束しますが, 振動はしません.");
       else
         print("振動しながら収束します.");
       end if;
    elif evalb(r1 > 0) or evalb(r2 > 0) then
       if i1 = 0 or i2 = 0 then
         print("発散し, 振動はしません.");
       else
         print("振動しながら発散します.");
       end if;
    end if;
    # ------
    deq1 := diff(x(t), t) = v(t);
    deq2 := diff(v(t), t) = -(k/m)*x(t) - (c/m)*v(t);
     # ------
    ics := \{x(0)=x0, D(x)(0)=dx0\};
    sol := dsolve( {deq1, deq2} union ics );
     # ------
    eq := rhs( sol[2] );
    plt1 := plot( eq, t=0..et );
     # ------
    # return(plt1, evals, ri);
  end proc: # mySim6
パラメータを定義し, mySim6 を実行します.
> sp := 1, 1, 6, -1, 0, 10;
                                                    (3.2.6.1)
                  sp := 1, 1, 6, -1, 0, 10
> mySim6(sp);
                "振動しながら収束します."
```



```
else
          print("振動しながら収束します.");
       end if;
     elif evalb(r1 > 0) or evalb(r2 > 0) then
       if i1 = 0 or i2 = 0 then
          print("発散し, 振動はしません.");
       else
          print("振動しながら発散します.");
       end if;
     end if;
     # ------
     deq1 := diff(x(t), t) = v(t);
     deq2 := diff(v(t), t) = -(k/m)*x(t) - (c/m)*v(t);
     # ------
     ics := \{x(0)=x0, D(x)(0)=dx0\};
     sol := dsolve( {deq1, deq2} union ics );
     # ------
     eq := rhs( sol[2] );
     plt1 := plot( eq, t=0..et );
     plt2 := plots[complexplot]( convert(evals,list), style=point,
  symbolsize=24);
     arrplt := Array([plt2, plt1]);
     plots[display](arrplt);
     # ------
     # return(plt1, evals, ri);
  end proc: # mySim7
パラメータを定義し, mySim7 を実行します.
> sp := 1, 1, 1, -1, 0, 10;
                                                       (3.2.7.1)
                  sp := 1, 1, 1, -1, 0, 10
> mySim7(sp);
                 "振動しながら収束します."
```


ステップ・バイ・ステップ式 はじめての Maple 応用編

Keywords & Key commands

▼やっぱり微積分

▼ 数列と和

```
seq()
sum()
plot()
infinity
' '
limit()
```

▼ 極限

```
limit()
plot()
limit( left )
limit( right )
plot()
```

▼ 微分法

```
diff()
simplify()
diff(), $
with( plots )
implicitplot()
sqrt()
plot( scaling )
expand()
```

連続微分

級数展開

```
series()
lhs()
rhs()
plot( view )
plot( numpoints )
convert( polynom )
plot()
seq()
with( plots )
display( insequence )
```

▼ 積分法

```
int()
simplify()
expand()
convert( tan )
convert( parfrac )
```

▼ 積分の応用

▼ 線の積分

plot()
diff()
sqrt()
int()
simplify()
->
evalf()

▼ 回転面の面積

->
int()
sqrt()
diff()
plot()
simplify()
eval()
plot(scaling)

▼2重積分の計算

plot3d()					
plot	3d(axes	3			
Int(Int())	(大文字	I)	
int(int())	(小文字	i)	

▼ いわゆる線形代数

▼ 行列の演算

with(LinearAlgebra)

▼ 行列の定義

```
Matrix()
ZeroMatrix()
Matrix( symbol )
<>
,
|
IdentityMatrix()
DiagonalMatrix()
RandomMatrix()
map()
```



```
Matrix( symbol )
MatrixAdd()
-
.
^(-1)
MatrixInverse()
Determinant()
Rank()
MatrixNorm()
max()
```

▼ 行列の操作

```
with( LinearAlgebra )
Matrix( symbol )
Transpose(
    ^%T
[]
,
...
-1
```

▼ ベクトル

with(LinearAlgebra)

▼ ベクトルの定義

```
Vector()
ZeroVector()
Vector[row]()
Vector( symbol )
<>
  |
,
RandomVector()
UnitVector()
```

▼ ベクトルの操作

```
Vector()
Vector[row]()
[]
```

▼ 足し算

with(LinearAlgebra)
Vector(symbol)
VectorAdd()

▼ ベクトルの角度

Vector()

VectorAngle()

▼ 内積(スカラー積)と外積(ベクトル積)

```
with( Student[ VectorCalculus ] )
Vector()
PlotVector( color )
PlotVector( axes )
PlotVector( scaling )
DotProduct()
CrossProduct()
```

▼ ノルム (ベクトルの大きさ)

with(LinearAlgebra)
Vector()
Norm()
infinity

固有値と固有ベクトル

with(LinearAlgebra)

▼ 固有値の計算

```
Matrix()
Eigenvalues()
DiagonalMatrix()
Determinant()
solve()
```

▼ 固有ベクトルの計算

Eigenvectors()

▼ 1次変換(線形写像)のプロット

```
with( Student[ LinearAlgebra ] )
IdentityMatrix()
LinearTransformPlot()
Matrix()
```

| 連立1次方程式の解法|

```
with( LinearAlgebra )
eval()
solve()
GenerateMatrix( augmented )
LinearSolve()
MatrixInverse()
<>
  |
true
.
ReducedRowEchelonForm()
LinearSystemPlot()
with( Student[ LinearAlgebra ] )
```

▼ 微分方程式に挑む!

▼ 数学モデルの作り方

▼ 常微分方程式の定義と解析解

▼ 少しだけ常微分方程式のこと

▼1階常微分方程式

V (例1)
$$\frac{\mathrm{d}}{\mathrm{d}x} y(x) = (1 - y(x)^2) \tan(x)$$

diff()
dsolve()
subs()
rhs()
plots[animate](plot)

▼ (例2)
$$x\left(\frac{\mathrm{d}}{\mathrm{d}x}y(x)\right) = y(x) + \sqrt{x^2 + y(x)^2}$$

diff()		
sqrt()		
dsolve()		
isolate()		
eval()		
rhs()		
plots[animate](plot)

▼ (例3)
$$\frac{d}{dx}y(x) + 2y(x)\tan(x) = \sin(x)$$

diff()
tan()
sin()
dsolve()
expand()
subs()
rhs()
plots[animate](plot)

▼ 2 階常微分方程式の解

▼ 1自由度粘性減衰振動系の解

diff()
exp()
eval()
expand()
solve()
dsolve()

▼指数関数の特性

exp()

▼1) 異なる2つの実根を持つ場合

▼ a) ともに正の場合

eval()
plot()
+infinity
plots[complexplot](style)
plots[complexplot](symbolsize)

```
eval()
plot()
+infinity
I
plots[complexplot]( style )
plots[complexplot]( symbolsize )
```

▼ c) ともに負の場合

```
eval()
plot()
+infinity
plots[complexplot]( style )
plots[complexplot]( symbolsize )
```

▼ 2) 異なる 2 つの虚根を持つ場合

▼ d) 実部が正の場合

```
eval()
evalc()
plot()
+infinity
plots[complexplot]( style )
plots[complexplot]( symbolsize )
```

🔻 e) 実部が負の場合

```
eval()
evalc()
plot()
+infinity
plots[complexplot]( style )
plots[complexplot]( symbolsize )
```

```
diff()
eval()
isolate()
expand()
Vector()
Matrix()
map( diff )
LinearAlgebra[Eigenvalues]()
```

連立微分方程式の解法

dsolve([], [])

初期値問題

```
diff()
dsolve()
D()()
eval()
dsolve()
rhs()
plot()
plots[animate]( plot )
```

▼ ラプラス変換による初期値問題の解法

```
with( inttrans )
diff()
D()()
laplace()
subs()
eval()
isolate()
convert( parfrac )
invlaplace()
union
```

▼ 2 階常微分方程式の数値解法

diff()
eval()
D()()
dsolve(numeric)
plots[odeplot]()
plots[odeplot](numpoints)
plots[odeplot](frames)

▼プログラミング前夜

▼ 処理の再利用

▼ プロシージャ化(処理を1行で記述可能な場合)

(基本構文)

プロシージャ名 := (変数) -> コマンド (変数を含む処理を記述);

▼ プロシージャ化(処理を複数行で記述する場合)

(基本構文)

プロシージャ名 := proc(引数)

処理;

end proc;

▼ グローバル変数とローカル変数

(例) グローバル変数とローカル変数の違い

proc()-end proc
local

▼引数の型・変数の型

(基本構文)

プロシージャ名 := proc(引数::型)::型

local 変数::型

処理;

end proc;

▼ 条件分岐(if-then-else-end if)

(基本構文)

if 条件式1 then

処理1;

elif 条件式2 then

処理2;

else

処理3;

end if;

▼ 数字の大小を判別する条件分岐

```
if-then-else-end if
evalb()
if-then-elif-then-else-end if
printf()
```

▼ 条件分岐を含むプロシージャの作成手順

(参考)引数を比較するプロシージャに変更

```
proc()-end proc
if-then-elif-then-else-end if
print()
```

▼ 繰り返し(for-do-end do)

(基本構文)

for インデックス名 from 開始数 by インクリメント数 to 終了数 do

処理(インデックス名を含む);

end do;

▼ 足し算の実行

▼ 繰り返し文の前に

▼ 繰り返し文の利用

for-from-to-by-do-ebd do
printf()
for-from-to-do-ebd do

▼ プロシージャへの拡張

proc(posint)-local-end proc for-from-to-do-ebd do

▼ (参考)sum コマンドを用いて実行します

sum()
' '
eval()

(参考)2つのインデックス操作

Matrix(symbol) for-from-to-do-ebd do

▼ それは振動しますか?

▼ Maple による2階常微分方程式の解法と解のプロット

diff()
eval()
D()()

dsolve()
union
rhs()
plot()

▼「それは振動しますか?」プロシージャの作成手順

2階常微分方程式の解法をプロシージャ化

proc()-local-end proc

▼ プロシージャのパラメータ化

proc(m, c, k, x0, dx0, et)-local-end proc

▼ 固有値の計算

proc(m, c, k, x0, dx0, et)-local-return-end proc

▼ 固有値の実部・虚部抽出

proc(m, c, k, x0, dx0, et)-local-return-end proc

実部の符号と条件分岐

proc(m, c, k, x0, dx0, et)-local-return-end proc if-then-elif-then-else-end if

▼ 虚部の符号と条件分岐

proc(m, c, k, x0, dx0, et)-local-return-end proc if-then-elif-then-else-end if

▼ 固有値のプロット

proc(m, c, k, x0, dx0, et)-local-return-end proc if-then-elif-then-else-end if